Table S1. The calculated elements of 2D elastic constants matrix and the in-plane stiffness for FeI_3 monolayer.

	<i>C</i> ₁₁	<i>C</i> ₂₂	<i>C</i> ₆₆	<i>C</i> ₁₂	<i>C</i> ₂₁	E_x	E_y
	(J·m ⁻²)	(J·m ⁻²)	(J·m ⁻²)				
FeI ₃	17.22	17.22	11.19	-5.16	-5.16	15.66	15.66

Table S2. The calculated elements of 2D elastic constants matrix and the in-plane stiffness for $FeI_{1.5}X_{1.5}$ (X=Cl, Br) monolayers.

	C_{11}	<i>C</i> ₂₂	<i>C</i> ₆₆	C_{12}	<i>C</i> ₂₁	E_x	E_y
	(J·m ⁻²)	(J·m ⁻²)	$(J \cdot m^{-2})$	(J·m ⁻²)	(J·m ⁻²)	(J·m ⁻²)	(J·m ⁻²)
FeI _{1.5} Cl _{1.5}	35.61	35.61	15.70	4.21	4.21	35.11	35.11
FeI _{1.5} Br _{1.5}	27.86	27.86	16.45	-5.04	-5.04	26.95	26.95

Fig. S1 Structure of the distorted FeI_6 octahedron for FeI_3 monolayer.

Fig. S2 Four possible magnetic configurations of (a) FM, (b) Néel-AFM, (c) Stripy-AFM, and (d) Zigzag AFM of FeI₃ monolayer, and (e) the nearest (J_1) , next-nearest (J_2) , next next-nearest (J_3) magnetic coupling parameters, the yellow and blue arrows represent spin-up and spin-down states of the Fe atoms, respectively.

Fig. S3 (a) Top and (b) side views for the snapshots of atomic configurations for FeI_3 monolayer at the end of 5ps AIMD simulation at 300K.

Fig. S4 Magnetic anisotropy energy (MAE) as a function of azimuthal angle for (a) FeI₃ monolayer, and (b) FeI₃ monolayer with 0.1e per unit cell of electron doping. Red solid lines are fitting lines; the inset table lists the standard errors for the fitting slope.

Fig. S5 Spin-resolved electronic band structure of FeI₃ monolayer with (a) -0.05e and (b) 0.1e per unit cell of carrier doping, the Fermi level is set as 0 eV. (c) valence band maximum (VBM), conduction band minimum (CBM), Δ_{cbm} and (d) nearest (J₁), next-nearest (J₂), next next-nearest exchange parameter (J₃) of FeI₃ monolayer with carrier doping ranging from -0.05e to 0.1e per unit cell. Positive and negative values represent the electron and hole doping, respectively.

Fig. S6 On-site magnetic moments of Cr atoms and the specific heat C_v as function of temperature based on Heisenberg model for CrI₃ monolayer, the value of J and A are obtained from Ref 21.

Fig. S7 Spin-resolved electronic band structure of $\text{FeI}_{1.5}\text{Cl}_{1.5}$ monolayer with (a) 0.2e per unit cell of carrier doping, the Fermi level is set as 0 eV. (b) Nearest (J₁), next-nearest (J₂), next next-nearest exchange parameter (J₃), (c) $\Delta 1$, $\Delta 2$, and $\Delta 3$ of $\text{FeI}_{1.5}\text{Cl}_{1.5}$ monolayer with carrier doping ranging from 0e to 0.2e per unit cell. Positive and negative values represent the electron and hole doping, respectively.

Fig. S8 On-site magnetic moments of Fe atoms and the specific heat C_{ν} as function of temperature based on (a) Ising model and (b) Heisenberg model for FeI_{1.5}Cl_{1.5} monolayer with 0.1e electron doping per unit.