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S1 Born-Oppenheimer Treatment

One can start the formulation of Born-Oppenheimer (BO) treatment1 with time-independent molec-

ular Schrödinger equation (SE):

Ĥ(r,R)Ψ(r,R) = EΨ(r,R), (S1)

where the electronic and nuclear coordinate vectors are collectively symbolized as r and R, respec-

tively. The total molecular Hamiltonian, Ĥ(r,R) is composed of nuclear kinetic energy operator

[T̂nuc(R)] and electronic Hamiltonian [Ĥel(r; R)]:

Ĥ(r,R) = T̂nuc(R) + Ĥel(r; R), (S2)

where

T̂nuc(R) =
∑ 1

2M
P̂ 2 = −

∑ h̄2

2M

(
∂2

∂R2

)
, (S3)

with P̂ represents nuclear momenta. On the other hand, the electronic Hamiltonian can be expressed

as,

Ĥel(r; R) = T̂el(r) + Ûcoul(r; R), (S4)

where Ûcoul(r; R) is total Coulomb energy due to interaction among nuclei and electrons. T̂el(r)

presents the kinetic energy of electrons:

T̂el(r) =
∑ 1

2me

p̂2 = −
∑ h̄2

2me

(
∂2

∂r2

)
, (S5)

where p̂ indicates electronic momenta. The electronic eigenfunction [ξi(r; R)] for any state (ith)

is parametrically dependent on nuclear coordinate (R) and satisfy the following time independent

electronic SE,

Ĥel(r; R)ξi(r; R) = ui(R)ξi(r; R). (S6)

Owing to the large mass difference between electrons (me) and nuclei (M), the electronic Hamilto-

nian [Ĥel(r; R)] is assumed as the zeroth order Hamiltonian, Ĥ0(r; R), where T̂nuc(R) (see Eq. S3)

can be considered as a perturbation on Ĥ0(r; R):

Ĥ(r,R) = Ĥel(r; R) + T̂nuc(R) = Ĥ0(r; R) + T̂nuc(R) (S7)

Considering the quantity

(
me

M0

)1/4

(M0 is the mean nuclear mass) as the switching parameter, κ,

the nuclear kinetic energy operator can be redefined as,

T̂nuc(R) = κ4Ĥ1(R), (S8)
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where

Ĥ1(R) = −
∑(

M0

M

)(
h̄2

2me

)(
∂2

∂R2

)
(S9)

and thereby, total Hamiltonian turns into,

Ĥ(r,R) = Ĥ0(r; R) + κ4Ĥ1(R). (S10)

On the other hand, if we take a nuclear geometry R very close to R0 [κx (= R − R0) denotes

deviation in nuclear coordinate from reference geometry], the eigenfunctions (ξi) and the eigenvalues

(ui) of the electronic Hamiltonian as depicted in Eq. S6 can be expanded in Taylor series around

R0:

ui(R) = ui(R
0 + κx) = u

(0)
i (R0) + κu

(1)
i (x) + κ2u

(2)
i (x) + .... (S11)

ξi(r; R) = ξi(r; R0 + κx) = ξ
(0)
i (r; R0) + κξ

(1)
i (r; x) + κ2ξ

(2)
i (r; x) + .... (S12)

Similarly, the zeroth order electronic Hamiltonian [Ĥ0 (r; R) in Eq. S10] is also expanded around

the same nuclear configuration, R0:

Ĥel (r; R) = Ĥ0 (r; R) = Ĥ0

(
r; R0 + κx

)
= Ĥ

(0)
0 (r; R0) + κĤ

(1)
0 (r; x) + κ2Ĥ

(2)
0 (r; x) + .... (S13)

While substituting Eqs. S11, S12 and S13 in Eq. S6, we obtain:[
(Ĥ

(0)
0 + κĤ

(1)
0 + κ2Ĥ

(2)
0 + ..)− (u

(0)
i + κu

(1)
i + κ2u

(2)
i + ..)

] [
ξ

(0)
i + κξ

(1)
i + κ2ξ

(2)
i + ....

]
= 0, (S14)

where the functional dependence on r or/and R are omitted now onwards. When we compare the

terms with zeroth, first and second power of κ, the following relations are obtained,

(Ĥ
(0)
0 − u

(0)
i )ξ

(0)
i = 0 (S15)

(Ĥ
(0)
0 − u

(0)
i )ξ

(1)
i = −(Ĥ

(1)
0 − u

(1)
i )ξ

(0)
i (S16)

(Ĥ
(0)
0 − u

(0)
i )ξ

(2)
i = −(Ĥ

(1)
0 − u

(1)
i )ξ

(1)
i − (Ĥ

(2)
0 − u

(2)
i )ξ

(0)
i (S17)

Such perturbation is employed on the electronic Hamiltonian at a fixed reference geometry [Ĥ
(0)
0 (r; R0)]

to get the corrections on eigenvalues and eigenfunctions of Ĥel (r; R) (see Eqs. S13 to S17).

On the other hand, one can carry out a perturbative approach by applying T̂nuc(R) as follows,

Ĥ(r,R) = Ĥel (r; R) + T̂nuc(R) (S18)
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While doing so, we replace
∂

∂R
=

1

κ
.
∂

∂x
in Eq. S9 and the nuclear kinetic energy operator is

modified as,

T̂nuc(x) = κ2Ĥ
(2)
1 (x), (S19)

with

Ĥ
(2)
1 (x) = −

∑(
M0

M

)(
h̄2

2me

)(
∂2

∂x2

)
.

When the nuclear kinetic energy operator (Eq. S19) and the electronic Hamiltonian (Eq. S13) are

substituted in Eq. S18, we arrive the following molecular Hamiltonian,

Ĥ(r,R) = Ĥel (r; R) + T̂nuc(R) =
[
Ĥ

(0)
0 (r; R0) + κĤ

(1)
0 (r; x) + κ2{Ĥ(2)

0 (r; x) + Ĥ
(2)
1 (x)}+ ..

]
(S20)

In case of this perturbative approach (see Eq. S20), since Ĥel (r; R) is also the zeroth order Hamilto-

nian, the eigenfunction, ξi(r; R) [= Ψ
(0)
i (r; R)] and eigenvalue ui(R) [= U

(0)
i (R)] can be considered

as zeroth order molecular wavefunction and energy, respectively. Hence, one can write,

Ĥel (r; R) Ψ
(0)
i (r; R) = U

(0)
i (R)Ψ

(0)
i (r; R). (S21)

Consequently, the perturbed molecular SE due to nuclear kinetic energy operator on the ith state

will be given by,

Ĥ(r,R)Ψi(r,R) = EiΨi(r,R). (S22)

Therefore, Ei takes the following form,

Ei = U
(0)
i (R) + κU

(1)
i (R) + κ2U

(2)
i (R) + .....

= [u
(0)
i (R0) + κu

(1)
i (x) + κ2u

(2)
i (x) + ....] + κU

(1)
i (R) + κ2U

(2)
i (R) + ..... (from Eq. S11)

= E
(0)
i (R0) + κE

(1)
i (R) + κ2E

(2)
i (R) + ..... , (S23)

where E
(0)
i (R0) = u

(0)
i (R0), E

(1)
i (R) = u

(1)
i (x) + U

(1)
i (R), E

(2)
i (R) = u

(2)
i (x) + U

(2)
i (R), etc. It

is important to note that E
(0)
i is defined at R0 and the remaining quantities [κE

(1)
i , κ2E

(2)
i , ...]

are functions of R, but finally, the total molecular energy (Ei) should appear as independent of

electronic or nuclear coordinates. On the other hand, molecular wavefunction for the ith state

[Ψi(r,R)] takes the following form:

Ψi(r,R) = Ψ
(0)
i (r; R) + κΨ

(1)
i (r,R) + κ2Ψ

(2)
i (r,R) + ..... (S24)

due to the perturbation of nuclear kinetic energy operator.
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Substituting Eqs. S20, S23 and S24 in Eq. S22, we obtain the molecular SE for ith state in Taylor

series, [
(Ĥ

(0)
0 + κĤ

(1)
0 + κ2(Ĥ

(2)
0 + Ĥ

(2)
1 ) + ....)− (E

(0)
i + κE

(1)
i + κ2E

(2)
i + ...)

]
[
Ψ

(0)
i + κΨ

(1)
i + κ2Ψ

(2)
i + ...

]
= 0 (S25)

where the functional dependencies on electronic and nuclear coordinates are omitted. While col-

lecting coefficients of κ0, κ1 and κ2, we obtain:

(Ĥ
(0)
0 − E

(0)
i )Ψ

(0)
i = 0 (S26)

(Ĥ
(0)
0 − E

(0)
i )Ψ

(1)
i = −(Ĥ

(1)
0 − E

(1)
i )Ψ

(0)
i (S27)

(Ĥ
(0)
0 − E

(0)
i )Ψ

(2)
i = −(Ĥ

(1)
0 − E

(1)
i )Ψ

(1)
i − (Ĥ

(2)
0 + Ĥ

(2)
1 − E

(2)
i )Ψ

(0)
i (S28)

One can observe that ξ
(0)
i (r; R0) and Ψ

(0)
i (r; R) are eigenfunctions of same Hamiltonian, Ĥ

(0)
0 (see

Eq. S15 and S26) with same eigenvalue (u
(0)
i or E

(0)
i ) and therefore, the following relation can be

written,

Ψ
(0)
i (r; R) = ψ

(0)
i (R)ξ

(0)
i (r; R0), (S29)

where ψ
(0)
i (R) is the zeroth order nuclear wavefunction. Similarly, by comparing the two sets of

perturbing series (Eqs. S15, S16, S17 and S26, S27, S28), we obtain the first and second order

corrections to the ith state molecular wavefunction as presented below,

Ψ
(1)
i (r,R) = ψ

(0)
i (R)ξ

(1)
i (r; x) + ψ

(1)
i (R)ξ

(0)
i (r; R0) (S30)

Ψ
(2)
i (r,R) = ψ

(0)
i (R)ξ

(2)
i (r; x) + ψ

(1)
i (R)ξ

(1)
i (r; x) + ψ

(2)
i (R)ξ

(0)
i (r; R0) (S31)

Therefore, molecular wavefunction for the ith state takes the following form,

Ψi(r,R) = Ψ
(0)
i (r; R) + κΨ

(1)
i (r,R) + κ2Ψ

(2)
i (r,R) + .....

= ψ
(0)
i (R){ξ(0)

i (r; R0) + κξ
(1)
i (r; x) + κ2ξ

(2)
i (r; x) + .....}+

κψ
(1)
i (R){ξ(0)

i (r; R0) + κξ
(1)
i (r; x) + ...}+

κ2ψ
(2)
i (R){ξ(0)

i (r; R0) + ...}+ ...

= {ψ(0)
i (R) + κψ

(1)
i (R) + κ2ψ

(2)
i (R) + ......}

{ξ(0)
i (r; R0) + κξ

(1)
i (r; x) + κ2ξ

(2)
i (r; x) + .....}

= ψad
i (R)ξad

i (r; R) (S32)
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Therefore, when we consider upto the second order correction (i.e., κ4), total molecular wavefunc-

tion can be written as a product of adiabatic nuclear wavefunction and electronic eigenfunction.

On the other hand, the third order correction to the molecular wavefunction takes the following

form,

Ψ
(3)
i = ψ

(0)
i (R)ξ

(3)
i (r; x) + ψ

(1)
i (R)ξ

(2)
i (r; x) + ψ

(2)
i (R)ξ

(1)
i (r; x) + ψ

(3)
i (R)ξ

(0)
i (r; R0)

+F (r,x), (S33)

where the term, F (r,x) is the solution of the following inhomogeneous equation:

(Ĥ
(0)
0 − E

(0)
i )F (r,x) =

h̄2

me

∑(M0

M

)(∂ψ(0)
i (R)

∂x

)(∂ξ(1)
i (r; x)

∂x

)
(S34)

Again, the fourth order correction is presented as,

Ψ
(4)
i = ψ

(0)
i (R)ξ

(4)
i (r; x) + ψ

(1)
i (R)ξ

(3)
i (r; x) + ψ

(2)
i (R)ξ

(2)
i (r; x) + ψ

(3)
i (R)ξ

(1)
i (r; x) + ψ

(4)
i (R)ξ

(0)
i (r; R0)

+G(r,x). (S35)

Here also the term, G(r,x) is the solution of the following equation:

(Ĥ
(0)
0 − E

(0)
i )G(r,x) = −H(1)

0 F (r,x)− Cψ(0)
i (R)ξ

(0)
i (r; R0)− (H

(2)
1 + u

(2)
i − E2

i )[ψ
(0)
i (R)ξ

(2)
i (r; x)

+ψ
(1)
i (R)ξ

(1)
i (r; x)]− (u

(3)
i − E

(3)
i )ψ

(0)
i (R)ξ

(1)
i (r; x), (S36)

where the constant, C takes the following form,

C =
h̄2

2me

∑(M0

M

)∫
ξ

(0)
i (r; R0)

∂2

∂x2
ξ

(2)
i (r; x)dr (S37)

It is clearly evident from Eqs. S33 and S35 that the third and fourth order corrections on molecular

wavefunctions contain the nuclear derivative coupling terms [F (r,x) and G(r,x)] over the electronic

eigenfunctions, where such quantities cannot be written in the multiplicative form, ψ
(m)
i (R)ξ

(n)
i (r; x).

Indeed, if we neglect F (r,x) and G(r,x) considering those terms being associated with the switch-

ing parameters κ6 and κ8, respectively, in the following form, we can revive the product form of

molecular wavefunction corrected upto κ8 for the ith state as shown in Eq. S32:

Ψi(r,R) = {ψ(0)
i (R) + κψ

(1)
i (R) + κ2ψ

(2)
i (R) + κ3ψ

(3)
i (R) + κ4ψ

(4)
i (R)......}

{ξ(0)
i (r; R0) + κξ

(1)
i (r; x) + κ2ξ

(2)
i (r; x) + κ3ξ

(3)
i (r; x) + κ4ξ

(4)
i (r; x).....}

= ψad
i (R)ξad

i (r; R) (S38)
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On the contrary, such derivative coupling terms, [F (r,x) andG(r,x)] naturally appear as the nuclear

kinetic energy operator acts on the product form of molecular wavefunction, where the electronic

eigenfunctions are projected out to formulate nuclear SE. While formulating such nuclear SE in

terms of nonadiabatic coupling terms (NACTs), one needs to consider the Born-Oppeneheimer-

Huang (BOH) expansion of the molecular wavefunction [Ψ(r,R) =
∑N

i=1 Ψi(r,R) =
∑N

i=1 ψ
ad
i (R)

ξad
i (r; R)]2 so that the couplings among all possible electronic states are incorporated.

S2 Degenerate Perturbation Theory: linear Jahn-Teller (JT) Model

According to the “toy” model of linear JT coupling,3 total electron-nuclear Hamiltonian can be

represented as,

Ĥ = Ĥ0 + Ŵ , (S39)

where Ĥ0 can be segregated into nuclear kinetic energy operator (T̂nuc) and the unperturbed po-

tential energy surfaces (Û0) matrices. According to JT theorem,3 any non-linear molecule having

degenerate electronic states encounters distortion and removes the degeneracy in order to lower the

energy of the system. We consider the nuclear vibrations along x and y coordinates as simple 2D

harmonic oscillators and arrive the following form of Û0 for doubly degenerate electronic states,

Û0 =
ω

2

x2 + y2 0

0 x2 + y2

 (S40)

where ω depicts the angular frequency of those vibrations. On the other hand, linear JT perturba-

tion can be defined as:

Ŵ = k

y x

x −y

 , (S41)

where x = ρ cosφ and y = ρ sinφ (ρ and φ are the polar analogues). We can evaluate the first order

corrections to energy with the help of degenerate perturbation theory, which is briefly discussed

here below:

For a set of m-fold degenerate states of energy eigenvalue, E
(0)
n , the set of unperturbed SE is

represented as:

Ĥ0ξ(0)
n = E(0)

n ξ(0)
n , 1 ≤ n ≤ m (S42)
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While applying a perturbation, the new set appears as:

Ĥξn = Enξn, 1 ≤ n ≤ m, (S43)

where Ĥ can be partitioned into two terms, Ĥ0 and λV̂ . The second one (λV̂ ) defines the pertur-

bation, where λ represents the switching parameter. While applying the degenerate perturbation

theory, we obtain the following secular determinant:∣∣∣∣∣∣∣∣∣∣∣∣

V11 − E(1)
n V12 · · · V1m

V21 V22 − E(1)
n · · · V2m

...
...

. . .
...

Vm1 Vm2 · · · Vmm − E(1)
n

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, 1 ≤ n ≤ m, (S44)

where Vij = 〈ξ(0)
i |V̂ |ξ

(0)
j 〉 and the m number of roots, E

(1)
1 , E

(1)
2 , ..., E

(1)
m give the first order correc-

tions to energy.

In case of a doubly degenerate system, the above determinant (Eq. S44) takes the following form:∣∣∣∣∣∣V11 − E(1)
n V12

V21 V22 − E(1)
n

∣∣∣∣∣∣ = 0 n = 1, 2, (S45)

and the two roots appear as:

E
(1)
± =

1

2

[
V11 + V22 ±

√
(V11 − V22)2 + 4|V12|2

]
(S46)

Comparing Eqs. S41 with S45, we find V11 = ky, V22 = −ky and V12 = V21 = kx, which leads to the

eigenvalue, E
(1)
± (= ±k

√
x2 + y2 = ±kρ). On the other hand, the eigenvectors take the following

form:

φ1 =

cos φ
2

sin φ
2

 φ2 =

− sin φ
2

cos φ
2

 (S47)

The above mentioned linear JT model was extensively studied by Öpik and Pryce4 on a hexa

aquocupric ion complex [Cu(NH4)2 (SO4)2.6H2O] almost a six decades ago. In this transition metal

complex, one can observe crystal field splitting of 2D state of free copper ion (d9) in presence of

cubic symmetry (t2g and eg). Öpik et al.4 applied a linear JT perturbation on those degenerate eg

states by doubly degenerate Q2 and Q3 vibrational modes. Such phenomenon can be defined by

the following potential energy operator:

S8



V̂ = Û0 + Ŵ

=
1

2
Mωb vib

2(Q2
2 +Q2

3)I + A

−Q3 −Q2

−Q2 Q3

 , (S48)

where I is 2 × 2 unit matrix, A represents linear JT term, M is the mass of a corner atom, and

ωb vib denotes the vibrational frequency. As a result of the linear JT perturbation (Ŵ ), the two

adiabatic potential energy surfaces (APESs) take the following functional form:

V± = ±Aρ+
1

2
Mωb vib

2ρ2, (S49)

where ρ (=
√
Q2

2 +Q2
3) and φ (= tan−1

(
Q2

Q3

)
) are the polar analogues of Q2 and Q3. It may be noted

that the lower APES has the shape of a ‘Mexican hat’. The associated electronic wavefunctions to

the lower and upper sheets of the PES can be written as:

ψ+(φ) = cos
φ

2

∣∣x2 − y2
〉

+ sin
φ

2

∣∣3z2 − r2
〉

ψ−(φ) = − sin
φ

2

∣∣x2 − y2
〉

+ cos
φ

2

∣∣3z2 − r2
〉
. (S50)

In the above expression, |x2 − y2〉 and |3z2 − r2〉 are the eigenfunctions of dx2−y2 and dz2 orbitals,

respectively.

S2.1 The SEs for lower and upper sheet of APES

Under the action of elliptical perturbation5, H ′(= 2Aρ cos(2θ−φ)): (i) Electronic degeneracy of Eg

state is removed with eigenvalues, ±Aρ, accompanied by the formation of a doubly branched APES;

(ii) Moreover, selection rule states that two vibrational levels within same electronic state (j = ±1)

interact in such a way that pseudo - rotational quantum numbers, ‘l’s remain as conserved, i.e.,

levels with same value of l(= m+ 1
2
j) would be coupled with each other; (iii) Consequently, the total

vibronic wavefunction can be written in the following form within beyond adiabatic approximation:5

Ψ = χ−(ρ, φ)ψ−(θ) + χ+(ρ, φ)ψ+(θ), (S51)

where χ± and ψ± are the nuclear (doubly degenerate eg vibrations) and electronic (single electron

in a ring) wavefunctions, respectively.

S9



Incorporating the vibronic wavefunction, Ψ (Eq. (S51)) and elliptical perturbation (H ′ = 2Aρ cos(2θ−

φ)) in time independent Schrödinger Equation (SE), followed by integrating out the electronic co-

ordinate (θ), the two coupled nuclear SEs (belonging to electronic state j = ±1) are obtained5 as

follows:

H0 − E Aρe−iφ

Aρeiφ H0 − E

χ+

χ−

 = 0, (S52)

where H0 is the unperturbed two dimensional (2D) isotropic harmonic oscillator (IHO) Hamiltonian

representing Q2-Q3 degenerate (eg) pair of normal modes and χ± are defined in terms of radial (τ±l )

and angular (ei(l±
1
2
j)φ) solutions of 2D IHO interacting with j = −1 and j = +1 electronic states.

After plugging such vibronic eigenfunctions in Eq. (S52), subtraction and addition of resultant

differential equations lead to the following expressions5:

(Hl − Aρ− E)ug(ρ) = (−1)l−
1
2

(
h̄2l

2Mρ2

)
ue(ρ), (S53)

and

(Hl + Aρ− E)ue(ρ) = (−1)−(l− 1
2

)

(
h̄2l

2Mρ2

)
ug(ρ), (S54)

where ug(ρ) = (−1)l−
1
2{τ+

l (ρ)− τ−l (ρ)}, ue(ρ) = {τ+
l (ρ) + τ−l (ρ)} and Hl is defined as:

Hl =
h̄2

2M

[
− d2

dρ2
− 1

ρ

d

dρ
+
l2 + 1

4

ρ2

]
+

1

2
Mω2

b vibρ
2. (S55)

Using Eqs. (S53), (S54) and (S55), the SEs for ground and excited electronic state are expressed

in the respective cases as:

(i) The ground state SE

Since the ground state minima are quite far away from the centre of APES, the right hand side of

the Eq. (S53) vanishes for low energy situation and thereby, leading to the following form of radial

and total vibronic SE5:

− h̄2

2M

[
d2ψg(ρ)

dρ2
− l2

ρ2
ψg(ρ)

]
− Egψg(ρ) +

(
−Aρ+

1

2
Mω2

b vibρ
2

)
ψg(ρ) = 0 radial SE (S56)

S10



and

− h̄2

2M

[
∂2χg
∂ρ2

+
1

ρ2

∂2χg
∂φ2

]
− Egχg +

(
−Aρ+

1

2
Mω2

b vibρ
2

)
χg = 0, total SE (S57)

where ψg(ρ) = ρ1/2ug(ρ) and χg = ψg(ρ)eilφ. Furthermore, using the analytic forms of χ±, ψg(ρ)

and ug(ρ) as shown above, χg can be written as follows5,6:

χg =
√
ρ (−1)l−

1
2 {χ+e

iφ/2 − χ−e−iφ/2}. (S58)

(ii) The excited state SE

In case of high energy situation, the term ug(ρ) in the Eq. (S54) vanishes, and consequently radial

and total SE for upper sheet of PES turn as5:

− h̄2

2M

[
d2ψe(ρ)

dρ2
− l2

ρ2
ψe(ρ)

]
− Eeψe(ρ) +

(
Aρ+

1

2
Mω2

b vibρ
2

)
ψe(ρ) = 0 radial SE (S59)

and

− h̄2

2M

[
∂2χe
∂ρ2

+
1

ρ2

∂2χe
∂φ2

]
− Eeχe +

(
Aρ+

1

2
Mω2

b vibρ
2

)
χe = 0, total SE (S60)

where ψe(ρ) = ρ1/2ue(ρ) and χe = ψe(ρ)eilφ. Moreover, employing the equations of χ±, ψe(ρ) and

ue(ρ), χe can be expressed similarly in terms of χ± as5,6:

χe =
√
ρ{χ+e

iφ/2 + χ−e
−iφ/2}. (S61)

S2.2 Cubic perturbed pseudorotational levels in ground electronic state

Öpik and Pryce4 introduced the higher order anharmonic term in the potential energy operator as:

V− = A

−Q3 −Q2

−Q2 Q3

+
1

2
Mω2

b vib

(
Q2

2 +Q2
3

)
I + A3Q3

(
Q2

3 − 3Q2
2

)
I, (S62)

where cubic term, A3Q3 (Q2
3 − 3Q2

2) transforms as A3ρ
3 cos 3φ in the polar coordinate (ρ, φ) and the

ground PES takes the following form:

V− = −Aρ+
1

2
Mω2

b vibρ
2 + A3ρ

3 cos 3φ. (S63)
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Such anharmonic term of vibronic interaction leads to form regularly alternating hump/barrier and

well/minimum in the ‘Mexican Hat’ APES.

The corresponding SE for cubic perturbed ground electronic state becomes:

− h̄2

2M

[
∂2

∂ρ2
+

1

ρ2

∂2

∂φ2

]
ξg(ρ, φ)− Eξg(ρ, φ)

+

(
−Aρ+

1

2
Mω2

b vibρ
2 + A3ρ

3 cos(3φ)

)
ξg(ρ, φ) = 0. (S64)

While investigating the motion of nuclei along the bottom of lower APES under the influence of such

higher order electron-nuclear coupling term, O’Brien7 averaged the above SE (Eq. (S64)) radially

by restricting the radial part of perturbed wavefunction set ({ξg(ρ, φ)[= w0
g(ρ)γ(φ)]}) to lowest

harmonic vibrational eigenfunction (w0
g(ρ)). As a result, the corresponding angular SE (Mathieu

equation of C3v symmetry group) turned into the following form:

α
∂2

∂φ2
γ(φ) + β cos(3φ)γ(φ) + ε(ρ)γ(φ) = 0 (S65)

and

α = 〈w0
g(ρ)| h̄2

2Mρ2
|w0

g(ρ)〉

β = 〈w0
g(ρ)| − A3ρ

3|w0
g(ρ)〉, (S66)

where splitting, α(= 〈w0
g(ρ)| h̄2

2Mρ2 |w0
g(ρ)〉) and barrier, β = (〈w0

g(ρ)| − A3ρ
3|w0

g(ρ)〉) parameters are

approximated at the ground state minima (ρ0) as α = h̄2

2Mρ2
0

and β = −A3ρ
3
0, since the minima

of lower sheet of APES are situated far away from the centre. In case of [Cu(H2O)6]2+ complex,

α = 11 cm−1 and β ' 544 cm−1 6, whereas polarized Raman scattering8,9 and structural phase

transition study10 of an untwinned LaMnO3 single crystal provide the magnitude of α and β as 25

cm−1 and 375 cm−1, respectively.

Expanding the angular wavefunction in Fourier series (γ(φ) =
∑

l al exp(ilφ)), the following recur-

rence relation of coefficients (al) is obtained from Eqs. S65 and S66:

al
(
ε− αl2

)
+

1

2
β (al−3 + al+3) = 0. (S67)
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Secular determinant of such recursive relation, Eq. (S67) had been solved for a large spectrum

of barrier parameter (β) values and the solutions, i.e., cubic perturbed pseudo - rotational energy

profiles fall into the irreducible representations (IRREPs) of C3v point group as7(see Fig. S1):

(i) l = ±3
2
,±9

2
,±15

2
, ... , is represented by A1 for al = +a−l, whereas it can be classified as A2 if

al = −a−l; (ii) On the other hand, l = +1
2
,−5

2
,+7

2
,−11

2
, ..., and l = −1

2
,+5

2
,−7

2
,+11

2
, ... , transform

as the two components of E, respectively. It is important to note that roto - vibrational levels,

l = 3
2

and 9
2

undergo appreciable splitting due to the warping of lower branch of APES.

0 200 400 600 800

Barrier height, β  (cm
 -1

) →

0

500

1000

1500

2000

E, E
′

E, E
′

E, E
′

E, E
′

A
B

A

B

l= ± 1/2
l= ± 3/2

l= ± 5/2

l= ± 7/2

l= ± 9/2

l= ± 11/2

ε+β (cm
-1

)

E, E
′

E, E
′

l= ± 13/2

l= ± 15/2

E, E
′

l= ± 17/2

0 200 400 600 800

Barrier height, β  (cm
 -1

) →

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

E, E
′

E, E
′

E, E
′

E, E
′

E, E
′

E, E
′

l= ± 19/2

l= ± 21/2

l= ± 23/2

l= ± 25/2

l= ± 27/2

ε+β (cm
-1

)

E, E
′

l= ± 29/2

l= ± 31/2

0 200 400 600 800

Barrier height, β  (cm
 -1

) →

0

500

1000

E, E
′

E, E
′

E, E
′

E, E
′

A

B

A

B

l= ± 1/2
l= ± 3/2

l= ± 5/2

l= ± 7/2

l= ± 9/2

l= ± 11/2

ε+β (cm
-1

)

E, E
′

E, E
′

l= ± 13/2

l= ± 15/2

l= ± 17/2

E, E
′

0 200 400 600 800

Barrier height, β  (cm
 -1

) →

900

1200

1500

1800

2100

2400

2700

3000

E, E
′

E, E
′

E, E
′

E, E
′

E, E
′

E, E
′

l= ± 19/2

l= ± 21/2

l= ± 23/2

l= ± 25/2

l= ± 27/2

ε+β (cm
-1

)

E, E
′l= ± 29/2

l= ± 31/2

(a) (b)

(c) (d)

Mn

Mn

Cu
Cu

Fig. S1: The profiles of cubic perturbed roto-vibrational energy for different pseudo - rotational levels

l = 1
2 , ...,17

2 and l = 19
2 , ...., 31

2 with respect to barrier parameter β for LaMnO3 (a)-(b) and [Cu(H2O)6]2+

(c)-(d) complexes, respectively.
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S2.3 Eigenvalues of Centrifugally Stabilized Excited State and Effect of Bond vibra-

tion

The frequencies of centrifugally stabilized excited oscillator depend on roto - vibrational quantum

numbers (‘l’s) in a complicated manner unlike typical harmonic oscillator, which has particular

one characteristic oscillation frequency; consequently, eigenspectrum of such centrifugally stabilized

oscillator display unusual trend with the variation of pseudo - rotational quantum number (see

Table S1).

Table S1: Eigenvalues for centrifugally stabilized excited state oscillators of various pseudo - rotational

levels (l) without and with the inclusion of bond vibration (b vib) for rare earth manganite, LaMnO3 (the

table is taken from Ref. [6]).

b vib excluded l = ±1/2 l = ±3/2 l = ±5/2 l = ±7/2 l = ±9/2 l = ±11/2 l = ±13/2 l = ±15/2

Es=0,±l [cm−1] 2226.24 2976.35 3718.79 4404.46 5043.95 5646.74 6219.72 6767.88

Es=1,±l [cm−1] 4612.31 4630.76 5114.17 5651.80 6191.05 6719.62 7234.49 7735.39

Es=2,±l [cm−1] 6998.38 6285.17 6509.55 6899.14 7338.16 7792.51 8249.26 8702.89

b vib included l = ±1/2 l = ±3/2 l = ±5/2 l = ±7/2 l = ±9/2 l = ±11/2 l = ±13/2 l = ±15/2

Eb vib
s=0,±l [cm−1] 2252.05 3013.16 3762.06 4452.52 5095.87 5701.93 6277.75 6828.44

Eb vib
s=1,±l [cm−1] 4689.75 4741.19 5243.99 5795.98 6346.82 6885.19 7408.59 7917.06

Eb vib
s=2,±l [cm−1] 7127.45 6469.23 6725.93 7139.44 7597.77 8068.45 8539.42 9005.68

As a result of complex dependency on pseudo - rotational quantum numbers (‘l’s), energy levels

l = 1/2 and l = 3/2 approach close to each other in the first excited state (s = 1), whereas in the

second excited state, i.e., for s = 2, roto - vibrational level l = 1/2 goes above of l = 7/2 level in

terms of the magnitude of energy6,11 (see Table S1).

Furthermore, Table S1 also reflects that with the employment of bond vibration, eigenvalues of

centrifugally stabilized vibronic levels are modified substantially such that roto - vibrational level

l = 1/2 situates in between l = 5
2

and l = 7
2

level in second excited state (s = 2), which is contrary

to without bond vibration case. It is very clear that entanglement with the bond vibration leads to

the increase in overall energy of each pseudo - rotational level profoundly6.
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S2.4 Cubic Perturbed Centrifugally Stabilized Excited State: Bound States; Eigen-

values; Effect of Bond Vibration

On the contrary to the ground electronic state, cubic perturbed pseudo - rotational energies, εls of

various roto - vibrational levels form bound state with linear Jahn-Teller term, Aρ in the excited

state associated with the upper sheet of APES (see Fig. S2 (a)-(d)) due to the contribution of

centrifugal term.
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Fig. S2: Variation of effective potential εl(ρ) + Aρ as a function of ρ coordinate for different pseudoro-

tational levels: (a) l = 1
2 ,

3
2 ,

5
2 , and 7

2 ; (b) l = 9
2 ,

11
2 ,

13
2 , and 15

2 . Profiles of the derivatives of effective

potential ∂[εl(ρ)+Aρ]
∂ρ against ρ coordinate for various roto-vibrational levels: (c) l = 1

2 ,
3
2 ,

5
2 , and 7

2 ; (d)

l = 9
2 ,

11
2 ,

13
2 , and 15

2 of cubic perturbed centrifugally stabilized excited state.

Table S2 depicts that under cubic perturbation, i.e., in presence of barrier (emerging from anhar-
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monicity), roto-vibrational states l = 3/2, l = 9/2 and l = 15/2 undergo splitting. Furthermore,

such magnitudes of splitting increase in the first (s = 1) and second (s = 2) excited states compare

to ground one (s = 0) of centrifugally stabilized vibronic levels6.

Table S2: Eigenvalues (Ecp
s,±l [cm−1]) for ground (s = 0), first (s = 1), and second (s = 2) excited states of

cubic perturbed centrifugally stabilized oscillators of various roto-vibrational levels (l) (this table is taken

from Ref. [6]).

Roto-vibrational

level (±l)
Ecp
s=0,±l (cm−1) Ecp

s=1,±l (cm−1) Ecp
s=2,±l (cm−1)

±1/2
2228.22 4608.91 6989.61

2228.22 4608.91 6989.61

±3/2
2994.42 4657.10 6321.57

2973.81 4611.32 6248.83

±5/2
3731.39 5124.49 6517.59

3731.39 5124.49 6517.59

±7/2
4421.10 5667.11 6913.12

4421.10 5667.11 6913.12

±9/2
5064.69 6211.95 7359.21

5064.35 6211.03 7357.70

±11/2
5674.85 6753.95 7833.06

5674.85 6753.95 7833.06

±13/2
6255.12 7281.70 8308.27

6255.12 7281.70 8308.27

±15/2
6812.48 7799.28 8786.08

6812.46 7799.22 8785.98

Moreover, Tables S2 and S3 reflect the fact that with the incorporation of harmonic bond vibration,

every level experiences an increase in energy and the effect of energy order altering has been reduced

both in first (s = 1) and second (s = 2) excited states of elastically entangled cubic perturbed

centrifugally stabilized oscillators in comparison to the without bond vibration case6.
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Table S3: Cubic perturbed elastically (including bond vibration) coupled eigenvalues (Ecp + b vib
s,±l [cm−1])

for ground (s = 0), first (s = 1), and second (s = 2) excited states of cubic perturbed centrifugally

stabilized oscillators of various pseudo - rotational levels (l) (the table is adapted from Ref. [6]).

Roto-vibrational

level (±l)
Ecp + b vib
s=0,±l [cm−1] Ecp + b vib

s=1,±l [cm−1] Ecp + b vib
s=2,±l [cm−1]

±1/2
2254.09 4686.52 7118.96

2254.09 4686.52 7118.96

±3/2
3031.03 4767.85 6504.66

3010.98 4722.85 6434.71

±5/2
3774.73 5254.51 6734.30

3774.73 5254.51 6734.30

±7/2
4469.21 5811.43 7153.66

4469.21 5811.43 7153.66

±9/2
5116.61 6367.70 7618.79

5116.30 6366.85 7617.40

±11/2
5729.75 6918.65 8107.60

5729.75 6918.65 8107.60

±13/2
6312.56 7454.00 8595.44

6312.56 7454.00 8595.44

±15/2
6871.98 7977.79 9083.59

6871.96 7977.73 9083.50

S3 JT Condition for Model Octahedral Complex

In 1939, Van Vleck12 carried out an extensive theoretical investigation on the JT distortion phe-

nomenon of octahedrally coordinated complex, M(H2O)6 (M is a paramagnetic metal ion). Among

the fifteen (15) normal modes, six (6) vibrations are classified as gerade (g) symmetric modes

(Q1 ∈ a1g; Q2, Q3 ∈ eg and Q4, Q5, Q6 ∈ t2g) due to presence of center of symmetry (see Fig. S3).

On the contrary, the center of symmetry is absent in rest of the normal mode coordinates and hence,

those are designated as ungerade (u) symmetric modes. Since the symmetrized direct product of

the degenerate electronic state (d orbitals) of the central metal atom [Γα × Γα] gives Γ(g) irreducible

representation (IRREP), JT condition will be true only if Γβ = Γ(g) [as Γ0 ∈ Γβ ⊗ [(Γα)2], see

Eq. 8 in the main article]. This implies that only the ‘g’ symmetric modes are responsible for JT
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distortion in M(H2O)6 complex except the completely symmetric one (Q1), which is unable to lift

the degeneracy. Those six modes can be represented as the linear combinations of displacement

vectors from the ideal octahedral arrangement (Xi, Yi, Zi),

Q1 = [X1 −X4 + Y2 − Y5 + Z3 − Z6]/
√

6

Q2 =
1

2
[X1 −X4 − Y2 + Y5]

Q3 = [
1

2
(X1 −X4 + Y2 − Y5)− Z3 + Z6]/

√
3

Q4 =
1

2
[Y1 − Y4 +X2 −X5]

Q5 =
1

2
[Z1 − Z4 +X3 −X6]

Q6 =
1

2
[Z2 − Z5 + Y3 − Y6]

Fig. S3: The diagram depicts vectorial displacements of the bond lengths for six gerade (g) symmetric

normal modes of the octahedrally coordinated complex (M(H2O)6).

It is important to mention that free M(H2O)6 complex belongs to octahedral point group (Oh),

but in a crystal field environment, it exhibits a distortion along the axis of trigonal symmetry due

to the external field originating from the bulk system.12 Hence, it is more suitable to take a linear

combination
(
Q′4 = [

1√
3

(Q4 +Q5 +Q6)], Q′5 = [
1√
2

(Q5 −Q6)], Q′6 = [
1√
6

(Q5 +Q6 − 2Q4)]
)

so

that the distortion can be incorporated only along the Q′4 mode keeping the remaining ones (Q′5, Q
′
6)

unaltered.
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In a crystal field environment, the Hamiltonian of M(H2O)6 complex takes the following form:

Ĥ = Ŵ0 + V̂trig

+
1

2
αQ2

1 +
1

2
β(Q2

2 +Q2
3) +

1

2
γQ′24 +

1

2
δ(Q′25 +Q′26 )

+ V2Q2 + V3Q3 + V ′4Q
′
4 + V ′5Q

′
5 + V ′6Q

′
6 (S69)

In the above equation (Eq. S69), the unperturbed Hamiltonian for rotational and translational

modes is collectively denoted by Ŵ0. On the other hand, V̂trig signifies the potential experienced

by the central metal atom due to the bulk crystal field. The quadratic functions of normal mode

coordinates represent the unperturbed energy due to vibrational motions. Finally, the parameters,

V2 to V3 and V ′4 to V ′6 represent the combining coefficients of linear perturbation, where the primed

quantities obey similar relationship to the normal mode coordinates, i.e. V ′4 =
1√
3

(V4 + V5 + V6),

V ′5 =
1√
2

(V5 − V6) and V ′6 =
1√
6

(V5 + V6 − 2V4). The coefficients, V2 to V6 are expressed as the

summation over the contributions arising from the d electrons of metal atom,12

V2 =
∑

0

{A(x2
0 − y2

0) +B(x4
0 − y4

0)}+ ....

V3 =
∑

0

{A(x2
0 + y2

0 − 2z2
0) +B(x4

0 + y4
0 − 2z4

0)}/
√

3 + ....

V4 =
∑

0

{Cx0y0 + E(x3
0y0 + x0y

3
0)}+ ....

V5 =
∑

0

{Cx0z0 + E(x3
0z0 + x0z

3
0)}+ ....

V6 =
∑

0

{Cy0z0 + E(y3
0z0 + y0z

3
0)}+ ....,

where A =
1

4
eeEFF (18R−4 − 75R−6r2

0), B = 175eeEFF/8R
6, C = eeEFF (−6R−4 + 15R−6r2

0),

E = −35eeEFF/2R
6 and r0 =

√
x2

0 + y2
0 + z2

0 . In the above expressions, eEFF represents the field

created by the corner atoms, e is the charge of the electron, R denotes the distance between the

central atom (M) and one of the ligand (H2O) in equilibrium, and {x0, y0, z0} symbolizes position

coordinates of one d electron of M .

In summary, it needs to be mentioned that V2 and V3 belong to eg (Γβ) symmetry, whereas V ′4

to V ′6 can be assigned into t2g (Γβ) IRREP (similar to the IRREPs of normal mode coordinates).

On the other hand, the symmetrized direct product [Γα × Γα] of doubly degenerate E (Eg/Eu)

and triply degenerate T (T1g/T1u/T2g/T2u) states contain A1g + Eg and A1g + Eg + T2g IRREPs,
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respectively. Hence, according to JT condition [Γ0 ∈ Γβ ⊗ [(Γα)2], see Eq. 8 in the main article],

V2 and V3 produce nonzero linear JT coupling (〈φ(0)
i |Vk|φ

(0)
j 〉, k = 2, 3) for any E or T symmetric

states, whereas V ′4 to V ′6 can lift the degeneracy of T symmetric ones only due to non-vanishing

integrals (〈φ(0)
i |V ′k|φ

(0)
j 〉, k = 4− 6).

S4 Vibrational Modes of NO3 and their Symmetry

Fig. S4: The diagram depicts vectorial displacements of the bond lengths and bond angles for six normal

modes of NO3 radical. Displacements of the atoms in a plane is symbolized by the arrows, whereas, the ±

sign indicates out of plane motion of those atoms.
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Table S4: Character table of D3h point group along with symmetry of the normal modes of NO3

D3h

E 2C3(z) 3C′2 σh(xy) 2S3 3σv linear functions, quadratic functions normal modes

rotations of NO3

A′1 1 1 1 1 1 1 x2 + y2,z2 Q1

A′2 1 1 -1 1 1 -1 Rz

E′ 2 -1 0 2 -1 0 x, y (x2 − y2,xy) (Q3x, Q3y), (Q4x, Q4y)

A′′1 1 1 1 -1 -1 -1

A′′2 1 1 -1 -1 -1 1 z Q2

E′′ 2 -1 0 -2 1 0 (Rx, Ry) (xz, yz)

S5 Adiabatic to Diabatic Transformation (ADT) Equations for three

to five state Sub-Hilbert Space

S5.1 ADT equations for 3 state Sub-Hilbert space13–15

ADT matrix of three-state sub-Hilbert space for the combination A12A13A23 is given by:

A(Θ12,Θ13,Θ23) = A12(Θ12) ·A13(Θ13) ·A23(Θ23),

=


cos Θ12 sin Θ12 0

− sin Θ12 cos Θ12 0

0 0 1




cos Θ13 0 sin Θ13

0 1 0

− sin Θ13 0 cos Θ13




1 0 0

0 cos Θ23 sin Θ23

0 − sin Θ23 cos Θ23



=



cos Θ12 cos Θ13 sin Θ12 cos Θ23 sin Θ12 sin Θ23

− cos Θ12 sin Θ13 sin Θ23 + cos Θ12 sin Θ13 cos Θ23

− sin Θ12 cos Θ13 cos Θ12 cos Θ23 cos Θ12 sin Θ23

+ sin Θ12 sin Θ13 sin Θ23 − sin Θ12 sin Θ13 cos Θ23

− sin Θ13 − cos Θ13 sin Θ23 cos Θ13 cos Θ23


,

where the ADT angles, Θij are functions of nuclear coordinates. While using the ADT condition
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as depicted in Eq. 32 of the main article, we obtain the following equations:

∇Θ12 = −τ 12 − tan Θ13(τ 13 sin Θ12 + τ 23 cos Θ12),

∇Θ13 = −(τ 13 cos Θ12 − τ 23 sin Θ12),

∇Θ23 = − 1

cos Θ13

(τ 13 sin Θ12 + τ 23 cos Θ12),

where τ 12, τ 13 and τ 23 are elements of nonadiabatic coupling matrix (NACM). For a three state

electronic manifold with two nuclear degrees of freedom (for example, q and φ in Jacobi coordinates

for F+H2 system as depicted in Fig. S5), the components of NACM take the following form:

τx(q, φ) =


0 τ 12

x (q, φ) τ 13
x (q, φ)

−τ 12
x (q, φ) 0 τ 23

x (q, φ)

−τ 13
x (q, φ) −τ 23

x (q, φ) 0

 , x = q or φ

and the two sets of scalar components of the ADT equations are as follows:

∂Θ12

∂q
= −τ 12

q − tan Θ13(τ 13
q sin Θ12 + τ 23

q cos Θ12),

∂Θ13

∂q
= −(τ 13

q cos Θ12 − τ 23
q sin Θ12),

∂Θ23

∂q
= − 1

cos Θ13

(τ 13
q sin Θ12 + τ 23

q cos Θ12).

∂Θ12

∂φ
= −τ 12

φ − tan Θ13(τ 13
φ sin Θ12 + τ 23

φ cos Θ12),

∂Θ13

∂φ
= −(τ 13

φ cos Θ12 − τ 23
φ sin Θ12),

∂Θ23

∂φ
= − 1

cos Θ13

(τ 13
φ sin Θ12 + τ 23

φ cos Θ12).
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Fig. S5: In the above diagram, F is traversing along a closed contour of radius, q = 1.0 bohr around the

center, X, where rHH (H-H distance), Rce (distance from the center of closed contour, X to the center

of mass of H-H) and RCI (distance from the conical intersection (CI) to the center of mass of H-H) are

taken as 1.401 bohr, 5.55 bohr and 5.35 bohr, respectively. In both cases (a) and (b), the center of the

circle is placed on the collinear H2 axis. The circular path is (a) aligned in plane with the H-H-X axis

to explore JT coupling and (b) tilted by 45◦ with respect to the same axis to calculate the Renner-Teller

(RT) interactions present in this triatomic reactive system.
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S5.2 ADT equations for 4 state Sub-Hilbert space16

We present the ADT equations for a set of four (4) coupled electronic states considering the following

order of multiplication of the elementary rotation matrices:

A(Θ12,Θ13,Θ23,Θ14,Θ24,Θ34) = A12(Θ12) ·A13(Θ13) ·A23(Θ23) ·A14(Θ14) ·A24(Θ24) ·A34(Θ34)

Employing the ADT condition (Eq. 32 in the main article), such equations are formulated as,

∇Θ12 = −τ 12 − sin Θ12(τ 13 tan Θ13 + τ 14 sec Θ13 tan Θ14)

− cos Θ12(τ 23 tan Θ13 + τ 24 sec Θ13 tan Θ14)

∇Θ13 = −τ 34 cos Θ13 tan Θ14 + sin Θ12(τ 23 + τ 24 sin Θ13 tan Θ14)−

cos Θ12(τ 13 + τ 14 sin Θ13 tan Θ14)

∇Θ14 = −τ 14 cos Θ12 cos Θ13 + τ 24 sin Θ12 cos Θ13 + τ 34 sin Θ13

∇Θ23 = − cos Θ13[τ 13 sin Θ12 sec2 Θ13

+(τ 34 − τ 24 sin Θ12 tan Θ13) cos Θ23 sec Θ14 tan Θ24

+τ 14 sin Θ12 sec Θ13(tan Θ13 tan Θ14 + sin Θ23 sec Θ14 tan Θ24)

+ cos Θ12{τ 23 sec2 Θ13 + τ 14 tan Θ13 cos Θ23 sec Θ14 tan Θ24

+τ 24(sec Θ13 tan Θ13 tan Θ14 + sin Θ23 sec Θ14 tan Θ24)}]

∇Θ24 = −τ 24 sin Θ12 sin Θ13 sec Θ14 sin Θ23 + τ 34 cos Θ13 sec Θ14 sin Θ23

−τ 14(sin Θ12 cos Θ23 sec Θ14 − cos Θ12 sin Θ13 sec Θ14 sin Θ23)

−τ 24 cos Θ12 cos Θ23 sec Θ14

∇Θ34 = −τ 14 sin Θ12 sin Θ23 sec Θ14 sec Θ24 + τ 24 sin Θ12 sin Θ13 cos Θ23 sec Θ14 sec Θ24

−τ 14 cos Θ12 sec Θ24 sin Θ13 cos Θ23 sec Θ14 − τ 24 cos Θ12 sin Θ23 sec Θ14 sec Θ24

−τ 34 cos Θ13 cos Θ23 sec Θ14 sec Θ24
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S5.3 ADT equations for 5 state Sub-Hilbert space17

In case of five (5) coupled electronic states, the ADT matrix is constructed by taking the product

of ten (10) rotation matrices according to the following order:

A = A12(Θ12).A13(Θ13).A23(Θ23).A14(Θ14).A24(Θ24).A34(Θ34).A15(Θ15).A25(Θ25).A35(Θ35).A45(Θ45)

The ADT equations are,

∇Θ12 = −τ12 − sin Θ12(τ13 tan Θ13 + τ14 sec Θ13 tan Θ14 + τ15 sec Θ13 sec Θ14 tan Θ15)− cos Θ12{τ23 tan Θ13

+ sec Θ13(τ24 tan Θ14 + τ25 sec Θ14 tan Θ15)}

∇Θ13 = − cos Θ13(τ34 tan Θ14 + τ35 sec Θ14 tan Θ15) + sin Θ12(τ23 + τ24 sin Θ13 tan Θ14 + τ25 sin Θ13 sec Θ14

tan Θ15)− cos Θ12{τ13 + sin Θ13(τ14 tan Θ14 + τ15 sec Θ14 tan Θ15)}

∇Θ23 = − cos Θ13[τ13 sin Θ12 sec2 Θ13 + cos Θ23{sec Θ14(τ34 − τ24 sin Θ12 tan Θ13) tan Θ24 + (τ35

−τ25 sin Θ12 tan Θ13)(tan Θ14 tan Θ15 tan Θ24 + sec Θ15 sec Θ24 tan Θ25)}+ sin Θ12 sec Θ13{tan Θ13

(τ14 tan Θ14 + τ15 sec Θ14 tan Θ15) + sin Θ23(τ14 sec Θ14 tan Θ24 + τ15 tan Θ14 tan Θ15 tan Θ24

+τ15 sec Θ15 sec Θ24 tan Θ25)}+ cos Θ12{τ23 sec2 Θ13 + tan Θ13 cos Θ23(τ14 sec Θ14 tan Θ24

+τ15 tan Θ14 tan Θ15 tan Θ24 + τ15 sec Θ15 sec Θ24 tan Θ25) + sec Θ13(tan Θ13(τ24 tan Θ14

+τ25 sec Θ14 tan Θ15) + sin Θ23(τ24 sec Θ14 tan Θ24 + τ25 tan Θ14 tan Θ15 tan Θ24

+τ25 sec Θ15 sec Θ24 tan Θ25))}]

∇Θ14 = −τ45 cos Θ14 tan Θ15 − cos Θ12 cos Θ13(τ14 + τ15 sin Θ14 tan Θ15) + sin Θ12 cos Θ13(τ24 + τ25 sin Θ14

tan Θ15) + sin Θ13(τ34 + τ35 sin Θ14 tan Θ15)
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∇Θ24 = sin Θ23{− sin Θ12 sin Θ13(τ24 sec Θ14 + τ25 tan Θ14 tan Θ15) + cos Θ13(τ34 sec Θ14

+τ35 tan Θ14 tan Θ15)}+ sec Θ15{−τ45 cos Θ14 cos Θ24 + cos Θ24(τ25 cos Θ13 sin Θ14

+τ35 sin Θ13) sin Θ14 + (τ35 cos Θ13 − τ25 sin Θ12 sin Θ13) sin Θ23 sin Θ24} tan Θ25

− sin Θ12 cos Θ23(τ14 sec Θ14 + τ15 tan Θ14 tan Θ15 + τ15 sec Θ15 sin Θ24 tan Θ25)

+ cos Θ12{sin Θ13 sin Θ23(τ14 sec Θ14 + τ15 tan Θ14 tan Θ15)

+τ15 sec Θ15(− cos Θ13 cos Θ24 sin Θ14 + sin Θ13 sin Θ23 sin Θ24) tan Θ25

− cos Θ23(τ24 sec Θ14 + τ25 tan Θ14 tan Θ15 + τ25 sec Θ15 sin Θ24 tan Θ25)}

∇Θ34 = sin Θ12{− sin Θ23(τ14 sec Θ14 sec Θ24 + τ15 tan Θ14 tan Θ15 sec Θ24 + τ15 sec Θ15 tan Θ24 tan Θ25)

+ sin Θ13 cos Θ23(τ24 sec Θ14 sec Θ24 + τ25 tan Θ14 tan Θ15 sec Θ24 + τ25 sec Θ15 tan Θ24 tan Θ25)}

− sec Θ15 sec Θ25[cos Θ34{τ45 cos Θ14 cos Θ24 − τ35 sin Θ13 sin Θ14 cos Θ24 + sin Θ12(τ15 cos Θ23

+τ25 sin Θ13 sin Θ23) sin Θ24}+ sin Θ12(−τ25 sin Θ13 cos Θ23 + τ15 sin Θ23) sin Θ34] tan Θ35 + cos Θ12

[− sec Θ24{sin Θ13 cos Θ23(τ14 sec Θ14 + τ15 tan Θ14 tan Θ15) + sin Θ23(τ24 sec Θ14 + τ25 tan Θ14

tan Θ15)} − sec Θ15(τ15 sin Θ13 cos Θ23 + τ25 sin Θ23) tan Θ24 tan Θ25 − sec Θ15 sec Θ25{cos Θ34

(τ25 cos Θ23 − τ15 sin Θ13 sin Θ23) sin Θ24 + (τ15 sin Θ13 cos Θ23 + τ25 sin Θ23) sin Θ34} tan Θ35]

+ cos Θ13[sec Θ15 sec Θ25 cos Θ34{cos Θ24(−τ15 cos Θ12 + τ25 sin Θ12) sin Θ14 + τ35 sin Θ23 sin Θ24}

tan Θ35 − cos Θ23(τ34 sec Θ14 sec Θ24 + τ35 tan Θ14 tan Θ15 sec Θ24 + τ35 sec Θ15 tan Θ24 tan Θ25

+τ35 sec Θ15 sec Θ25 sin Θ34 tan Θ35)]

∇Θ15 = −τ15 cos Θ12 cos Θ13 cos Θ14 + τ25 sin Θ12 cos Θ13 cos Θ14 + τ35 sin Θ13 cos Θ14 + τ45 sin Θ14

∇Θ25 = sec Θ15[cos Θ24{− cos Θ23(τ25 cos Θ12 + τ15 sin Θ12) + (τ35 cos Θ13

+(τ15 cos Θ12 − τ25 sin Θ12) sin Θ13) sin Θ23}+ {τ45 cos Θ14 + (τ15 cos Θ12 cos Θ13

−τ25 sin Θ12 cos Θ13 − τ35 sin Θ13) sin Θ14} sin Θ24]

∇Θ35 = sec Θ15 sec Θ25[− cos Θ34{τ35 cos Θ13 cos Θ23 + cos Θ23(τ15 cos Θ12 − τ25 sin Θ12) sin Θ13 + (τ25 cos Θ12

+τ15 sin Θ12) sin Θ23}+ {τ45 cos Θ14 cos Θ24 + cos Θ24(τ15 cos Θ12 cos Θ13 − τ25 sin Θ12 cos Θ13

−τ35 sin Θ13) sin Θ14 + (cos Θ23(τ25 cos Θ12 + τ15 sin Θ12)− (τ35 cos Θ13 + (τ15 cos Θ12

−τ25 sin Θ12) sin Θ13) sin Θ23) sin Θ24} sin Θ34]

∇Θ45 = sec Θ15 sec Θ25 sec Θ35[cos Θ34{−τ45 cos Θ14 cos Θ24 + cos Θ24(−τ15 cos Θ12 cos Θ13

+τ25 sin Θ12 cos Θ13 + τ35 sin Θ13) sin Θ14 − (cos Θ23(τ25 cos Θ12 + τ15 sin Θ12)−

(τ35 cos Θ13 + (τ15 cos Θ12 − τ25 sin Θ12) sin Θ13) sin Θ23) sin Θ24} −

{τ35 cos Θ13 cos Θ23 + cos Θ23(τ15 cos Θ12 − τ25 sin Θ12) sin Θ13

+(τ25 cos Θ12 + τ15 sin Θ12) sin Θ23} sin Θ34]
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S6 Molecular Symmetry Adaptation for D3h System

Theorem 1: If the IRREP of a nonadiabatic coupling term (NACT), τ ijl is known along a specific

symmetry adapted nuclear degree of freedom (DOF), Rl, the IRREP of the another one, τ ijk along a

different symmetry adapted nuclear coordinate, Rk can be obtained by implementing the following

relationship:18

Γ(τ ijk ) = Γ

(
∂

∂Rk

)
× Γ

(
∂

∂Rl

)
× Γ(τ ijl ), (S74)

where

τ ijk =
〈
ξi

∣∣∣ ∂ξj
∂Rk

〉
. (S75)

Employing the above criterion, one can determine the possible combinations of the IRREPs by fixing

each of the NACTs [τks (k = ρ and φ or x and y)] to the totally symmetric one (A′1), successively.

For D3h(M) Molecular Symmetry (MS) group, if we choose τρ ∈ A′1, it can be found from Table S5

and Eq. S74 that τφ ∈ A′′1 and τx, τy ∈ E ′′. Similarly, if the IRREP of τφ is assumed as A′1, we

obtain τρ ∈ A′′1 and τx, τy ∈ E ′. On the contrary, for other two possibilities (τx ∈ A′1 or τy ∈ A′1), τy

or τx belongs to reducible representation, which contradicts the construction of Character Table19

as depicted in Table S5.

Table S5: Extended character table of molecular symmetry group D3h(M) with different components of

NACT. This table is adapted from Ref. [15].

D3h(M)

E (123) (12) E? (123)? (12)? coord. deriv. 1st 2nd

(132) (13) (132)? (13)? comb. comb.

(23) (23)?

A′1 1 1 1 1 1 1 τρ τφ

A′2 1 1 -1 1 1 -1 φ ∂
∂φ

E′ 2 -1 0 2 -1 0 x, y ∂
∂x

, ∂
∂y

τx, τy

A′′1 1 1 1 -1 -1 -1 τφ τρ

A′′2 1 1 -1 -1 -1 1 ρ ∂
∂ρ

E′′ 2 -1 0 -2 1 0 τx,τy

Among the two possible combinations depicted above, the second one (τφ ∈ A′1, τρ ∈ A′′1 and

τx, τy ∈ E ′) is compatible to the quantization rule, which is demonstrated in the following para-
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graphs.

Fig. S6 depicts the nodal patterns of the NACTs19,20 for all possible IRREPs, which are presented

as functions of normal mode coordinates, Qx (bending) and Qy (asymmetric stretching) of Na3

cluster. In this diagram, the inner and outer concentric circles signify Qx−Qy plane for positive and

negative values of Qs (symmetric stretching), respectively. In order to find the correct combination

of IRREPs from the two possible ones (see Table S5), we consider the smaller circles of Fig. S6

and apply the following quantization rule21 along a closed path Lg of nuclear coordinate R around

a single CI: ∮
dR · τ (R;Lg) = ±π (S76)
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Fig. S6: Nodal patterns of IRREPs of D3h point group. This figure is adapted from Ref. [15].

According to Fig. S7, this closed contour can be constructed by three components,18 namely, one

torsional (tor) and two radial (rad) lines and then, the contour integral takes the following form:∮
dR · τ (R;Lg) = Irad,1 + Itor + Irad,2 = ±π,

where

Irad,1 =

ρ1∫
0

dρ τρ(ρ, φ1;Lg), Itor =

φ2∫
φ1

dφ τφ(ρ1, φ;Lg)

and Irad,2 =

0∫
ρ1

dρ τρ(ρ, φ2;Lg).

S28



2 1( , ) 
2 2( , ) 

1 1( , ) 

1 2( , ) 

(0,0)

+

+

++
+

+

2 1( , ) 
2 2( , ) 

1 1( , ) 

1 2( , ) 

(0,0)

_
+

+

+

__

2 1( , ) 
2 2( , ) 

1 1( , ) 

1 2( , ) 

(0,0)

+

_

__

+
+

2 1( , ) 
2 2( , ) 

1 1( , ) 

1 2( , ) 

(0,0)+ +

+ +

+

+

Conical Intersection

(c)

(a) (b)

(d)

Fig. S7: For 1st combination of IRREPs of the NACTs, the radial and torsional parts of a closed loop Lg

encircling a CI point in (ρ, φ) plane are depicted in diagrams (a) and (b). On the other hand, the same

quantities for the 2nd combination are demonstrated in diagrams (c) and (d). Figures are taken from Ref.

[15].

Fig. S7 (a-b) depict Irad,1 + Irad,2 = 0 and Itor = 0 for the first combination (τρ ∈ A′1, τφ ∈ A′′1,

τx, τy ∈ E ′′). On the contrary, the second combination (τφ ∈ A′1, τρ ∈ A′′1 and τx, τy ∈ E ′) produces

non-zero residue for the contour integral [see Fig. S7 (c-d)]. Therefore, it is worthwhile to mention

that only the second set of IRREPs is the physically meaningful one.

Theorem 2: For a specific nuclear DOF (l), if the IRREP of a particular NACT within two elec-

tronic states (p and q), τ pql is either known or assumed, it is possible to find out the IRREP of

another one (τ qrl ) within two electronic states, q and r.

For a loop-type sequence of N molecular states with same spin multiplicity, namely, N doublet

states of Na3 cluster, Da, Db, Dc,....., Dy, Dz=a, the product of the NACTs (τa,bk , τ b,ck ,....., τ y,z=ak ) is

defined as:

τa,b,c,...,y,z=ak = τa,bk τ b,ck ...τ y,z=ak . (S77)

S29



and their IRREPs are related as:

Γ(τa,b,c,...,y,z=ak ) = Γ(τa,bk )× Γ(τ b,ck )× ...× Γ(τy,z=ak )

= Γ(ξa)2 × Γ(ξb)
2

× ...× Γ(ξy)2 × Γ

(
∂

∂Rk

)N
(S78)

Employing the above relation, one can find for 1D IRREPs18:

Γ(τa,b,c,...,y,z=ak ) =

 Γ
(

∂
∂Rk

)
when N is odd

A′1 when N is even
(S79)

On the other hand, if a conical intersection (CI) point exists between two electronic states i and

i+1, the associated electronic wavefunctions undergo sign flipping while encircling the point. Those

adiabatic wavefunctions and the NACTs, τ i,jk and τ
(i+1),j
k belong to same IRREP (crossing-rule),

which is represented as,

Γ(τ i,jk ) = Γ(τ
(i+1),j
k ). (S80)

For Na3 cluster, three-state SHS is created by the states 22E ′ and 12A′1, and there are multiple CIs

within 22E ′ state. Hence, the second theorem leads to the following relation:

Γ(τ 1,2,3,1
k ) = Γ(τ 12

k )× Γ(τ 23
k )× Γ(τ 31

k )

= Γ(τ 12
k )× Γ(τ 23

k )2 (S81)

employing the conditions, Γ(τ 31
k ) = Γ(τ 13

k ) and Γ(τ 13
k ) = Γ(τ 23

k ) as per the crossing rule (Eq. S80).

According to the second combination of Table S5, one can find Γ(τ 23
ρ ) = A′′1 and Γ(τ 23

φ ) = A′1, and

hence, by using Eqs. S79 and S81, the IRREPs of τ 12
ρ and τ 12

φ are obtained as,

Γ(τ 12
ρ )× (A′′1)2 = Γ

(
∂

∂ρ

)
= A′′2

⇒ Γ(τ 12
ρ ) = A′′2 (S82)

and
Γ(τ 12

φ )× (A′1)2 = Γ

(
∂

∂φ

)
= A′2

⇒ Γ(τ 12
φ ) = A′2 (S83)

When the above treatment is extended to 2D IRREP cases, we obtain the following relation for
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Γ(τ 23
x ):15

Γ(τ 23
x ) = Γ

(〈
ξ2

∣∣∣∂ξ3

∂x

〉)
⇒ Γ(τ 23

x ) = Γ(ξ2)× Γ

(
∂

∂x

)
× Γ(ξ3)

⇒ E ′ = Γ(ξ2)× E ′ × Γ(ξ3). (S84a)

Therefore, Γ(ξ2)× Γ(ξ3) = A′1 (S84b)

Similarly, for Γ(τ 13
x ),

Γ(ξ1)× Γ(ξ3) = A′1. (S84c)

The above expressions (Eqs S84b and S84c) clearly indicate that,

Γ(ξ1)× Γ(ξ2)× Γ(ξ3) = A′1. (S85)

Finally, we achieve the following relation using Eqs S78 and S85 for the Na3 case:

Γ(τ1,2,3,1x ) = Γ(ξ1)2 × Γ(ξ2)2 × Γ(ξ3)2 × Γ

(
∂

∂x

)3

= A′1 × Γ

(
∂

∂x

)3

= Γ

(
∂

∂x

)3

= (E′)3 (S86)

On the other hand, we arrive from Table S5 and Eq. S81,

Γ(τ 1,2,3,1
x ) = Γ(τ 12

x )× Γ(τ 23
x )2

= Γ(τ 12
x )× (E ′)2 (S87)

and then, by comparing Eqs. S86 and S87, one obtain Γ(τ 12
x ) = E ′ and similarly, Γ(τ 12

y ) = E ′. The

IRREPs for all kind of NACTs for Na3 cluster15,22 are depicted in Table S6.
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Table S6: Extended character table of molecular symmetry group D3h(M) with different NAC elements.

This table is taken from Ref. [15].

D3h(M)

E (123) (12) E? (123)? (12)? coord. deriv. τ23
k τ12

k

(132) (13) (132)? (13)? τ13
k

(23) (23)?

A′1 1 1 1 1 1 1 τφ

A′2 1 1 -1 1 1 -1 φ ∂
∂φ

τφ

E′ 2 -1 0 2 -1 0 x, y ∂
∂x

, ∂
∂y

τx,τy τx,τy

A′′1 1 1 1 -1 -1 -1 τρ

A′′2 1 1 -1 -1 -1 1 ρ ∂
∂ρ

τρ

E′′ 2 -1 0 -2 1 0

S7 Extended Born-Oppenheimer (EBO) Formalism for Two and Three

Electronic State Sub-Hilbert Space

S7.1 Two Electronic State Sub-Hilbert Space: Abelian Case

The nonadiabatic coupling matrix (NACM), τ for a two electronic state sub-Hilbert space is given

by,

τ =

 0 τ 12

−τ 12 0

 = τ 12

 0 1

−1 0

 (S88)

where τ 12 = −∇RΘ12 and curl τ = 0 for any arbitrary nuclear geometry (Abelian case). Hence,

one can express τ as a product of a vector function and an antisymmetric scalar matrix. As a

consequence, single-surface EBO equations can be formulated in terms of the eigenvalues of NACM,

±iω [ω = |τ 12| = (∇pΘ
2
12 +∇qΘ

2
12 + ...)1/2], where Θ12 is the nuclear coordinate dependent mixing

angle between the two electronic states.
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S7.2 Three Electronic State Sub-Hilbert Space: Non-Abelian Case14

While considering a three state sub-Hilbert space, the elements of NACM (τ ij = 〈ξi|∇Rξj〉) are

formulated as functions of ADT angles,

τ 12 = − cos Θ13 cos Θ23∇RΘ12 − sin Θ23∇RΘ13 (S89a)

τ 13 = cos Θ13 sin Θ23∇RΘ12 − cos Θ23∇RΘ13 (S89b)

τ 23 = − sin Θ13∇RΘ12 −∇RΘ23 (S89c)

which lead to the following expressions of curl τ :

curl τ12pq = [τ × τ ]12pq = sin Θ13 cos Θ23(∇pΘ12∇qΘ13 −∇qΘ12∇pΘ13)

+ sin Θ23 cos Θ13(∇pΘ12∇qΘ23 −∇qΘ12∇pΘ23)

− cos Θ23(∇pΘ13∇qΘ23 −∇qΘ13∇pΘ23) (S90a)

curl τ13pq = [τ × τ ]13pq = − sin Θ13 sin Θ23(∇pΘ12∇qΘ13 −∇qΘ12∇pΘ13)

+ cos Θ23 cos Θ13(∇pΘ12∇qΘ23 −∇qΘ12∇pΘ23)

+ sin Θ23(∇pΘ13∇qΘ23 −∇qΘ13∇pΘ23) (S90b)

curl τ23pq = [τ × τ ]23pq = − cos Θ13(∇pΘ12∇qΘ13 −∇qΘ12∇pΘ13), (S90c)

where p and q represent any two Cartesian coordinates.

While considering parametric representation of vector equation of a conical surface, the Jacobian

appears as zero (0)14,16,23,24 at those CI point(s) (see Fig. S8). Hence, the relation, curl τ ' 0 holds

at the close vicinity of CI point(s) for sub-Hilbert spaces, N≥3 leading to the following relationships

among the ADT angles from Eq. S90:(
∇pΘ13

∇pΘ12

)
=

(
∇qΘ13

∇qΘ12

)
and

(
∇pΘ23

∇pΘ12

)
=

(
∇qΘ23

∇qΘ12

)
(S91)
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Fig. S8: The diagram portrays the conical surface over which the Jacobian Transformation is defined.24

While substituting the above relations in Eq. S89, we come to the following product form of NACM,

τ = ∇RΘ12



0 − sin Θ23

(
∇pΘ13

∇pΘ12

)
− cos Θ23

(
∇pΘ13

∇pΘ12

)
− cos Θ13 cos Θ23 + cos Θ13 sin Θ23

sin Θ23

(
∇pΘ13

∇pΘ12

)
0 − sin Θ13 −

(
∇pΘ23

∇pΘ12

)
+ cos Θ13 cos Θ23

cos Θ23

(
∇pΘ13

∇pΘ12

)
sin Θ13 +

(
∇pΘ23

∇pΘ12

)
0

− cos Θ13 sin Θ23



(S92)

with eigenvalues, −iω, 0, iω, where

ω = ∇RΘ12

[
1 +

(
∇pΘ13

∇pΘ12

)2

+

(
∇pΘ23

∇pΘ12

)2

+ 2 sin Θ13

(
∇pΘ23

∇pΘ12

)]1/2
. (S93)
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S8 Even-Parity PESs and Couplings for Asymmetric Stretching/Bend-

ing Modes
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Fig. S9: The upper panel [(a) - (c)] depicts 1D cuts of diabatic coupling elements, W12 of NO2 radical

(X2A1 and A2B2) along Q3, W12 of Na3 cluster (2 2E′) along Qy and W23 of NO3 radical (Ã2E′′) along Q3x

mode, respectively. On the other hand, the lower panel [(d) and (e)] represents 1D variation of diabatic

couplings, W34 of C6H+
6 (B̃2E2g) along Q16x and W12 of 1,3,5-C6H3F+

3 radical cation (X̃2E′′) along Q9x

normal mode, respectively. In all cases, the couplings show symmetric functional forms, which can be fitted

with even power polynomials.
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Fig. S10: The above diagram demonstrates 2D contour of diabatic coupling elements, namely, (a) W12 of

NO2 radical (X2A1 and A2B2) over Q1 − Q3 plane, (b) W12 of Na3 cluster (2 2E′) over Qx − Qy plane,

(c) W23 of NO3 radical (Ã2E′′) over Q3x −Q3y nuclear plane, (d) W34 of C6H+
6 (B̃2E2g) over Q16x −Q16y

plane and (e) W12 of 1,3,5-C6H3F+
3 (X̃2E′′) over Q9x −Q9y plane. It is clearly evident that the couplings

exhibit symmetric functional variation along Q3, Qy, Q3x, Q16x and Q9x normal modes of NO2, Na3, NO3,

C6H+
6 and 1,3,5-C6H3F+

3 , respectively.
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Fig. S11: Panel (a) portrays adiabatic potential energy curves (PECs), u2 and u3 (Ã2E′′) as function of

Q3x normal mode of NO3 radical keeping the magnitude of Q3y at zero (0). On the other hand, panel

(b) depicts 1D variation of φ component of associate NACT (τ23
φ ) along the same coordinate (Q3x). In

both the situations, the curves exhibit symmetric functional form along Q3x coordinate and thereby, the

corresponding diabatic coupling (W23) also shows such symmetric variation (see Fig. S9c and S10c).
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S9 Calculation of Theoretical Photodetachment Spectra

While performing nuclear dynamics to simulate photodetachment spectra of prototypical molecular

systems with FFT-Lanczos or time-dependent discrete variable representation (TDDVR) method-

ology, the time-dependent SE is solved to compute the nuclear wavefunctions [ψ(t)] at different

time. These wavefunctions are employed to evaluate the following autocorrelation function:

C(t) = 〈ψ(0)|ψ(t)〉, (S94)

= 〈ψ? (t/2) |ψ (t/2)〉. (S95)

It is important to highlight that Eq. S95 is more accurate and computationally faster for implemen-

tation than the other one (Eq. S94), though Eq. S95 is applicable only for real initial wavefunction

and the Hamiltonian is totally symmetric (A1). Those functions (Eq. S95) are used to carry out

the following Fourier transformation,

I(ω) ∝ ω

∫ ∞
−∞

C(t) exp(iωt)dt, (S96)

where ω is frequency and I(ω) dictates the intensity of the spectral bands in the photodetachment

spectra of a molecule.

S10 Implementation of Beyond Born-Oppenheimer (BBO) Theory on

Model Hamiltonian of Na3 Cluster25,26

In order to explore the validity of EBO formalism for a tri-state system, we have selectively chosen

the model form of diabatic Hamiltonian for Na3 cluster proposed by Cocchini et al.25 In this system,

2 2E ′ and 1 2A′1 states are nonadiabatically coupled over the nuclear plane constituted with polar

counterparts (ρ− φ) of bending (Qx) and asymmetric stretching (Qy) modes. The model diabatic

Hamiltonian is:25

V dia(ρ, φ) =


ρ2

2
+ U2 U1 W1 −W2

U1
ρ2

2
− U2 W1 +W2

W1 −W2 W1 +W2 ε0 +
ρ2

2

 , (S97)

where
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U1(ρ, φ) = Kρ cosφ+
1

2
gρ2 cos(2φ)

U2(ρ, φ) = Kρ sinφ− 1

2
gρ2 sin(2φ)

W1(ρ, φ) = Pρ cosφ+
1

2
fρ2 cos(2φ)

W2(ρ, φ) = Pρ sinφ− 1

2
fρ2 sin(2φ)

In the above expressions, JT coupling constants [K (= 4.9) and g (= 0.035)]25 and PJT coupling

parameters [P (= 3.46) and f (= 0.025)]25 appear in dimensionless units as the nuclear coordinates

are dimensionless. On the other hand, the adjustable parameter, ε0 (= 2∆) dictates the energy

separation (∆) between second and third states.

At the PJT situation (K = g = 0), analytic expressions of ρ and φ components of NACTs can be

calculated analytically from the diabatic Hamiltonian (Eq. S97) as:

τ12
ρ = − A0√

2wB−
, τ13

ρ = − A0√
2wB+

, τ23
ρ =

A1∆

2
√

2w(∆2 + 2w)
, (S98a)

τ12
φ =

A2√
2wB−

, τ13
φ =

A2√
2wB+

, τ23
φ = − 3ρA0∆

2
√

2w(∆2 + 2w)
, (S98b)

where

A0(ρ, φ) = Pfρ2 sin(3φ)

A1(ρ, φ) = 2P 2ρ+ f2ρ3 + 3Pfρ2 cos(3φ)

A2(ρ, φ) = 2P 2ρ2 − f2ρ4 − Pfρ3 cos(3φ)

B±(ρ, φ) = 2w + (∆±
√

∆2 + 2w)2

w(ρ, φ) = W 2
1 +W 2

2 = P 2ρ2 +
f2ρ4

4
+ Pfρ3 cos(3φ)

Again, the curls take the following analytical forms:

curl τ12
ρφ = − (3ρA2

0 −A1A2)∆

4w(∆2 + 2w)
√
B+

; curl τ13
ρφ =

(3ρA2
0 −A1A2)∆

4w(∆2 + 2w)
√
B−

; curl τ23
ρφ = 0. (S99)

It is evident from the above functional forms that curl τ ijρφs become identically zero (0) at ∆ = 0, i.e.,

at the point of three-state degeneracy between A and E states. On the other hand, the numerically

calculated curls obtained from gradient of ADT angles appear to be negligibly small (curl τ ijρφ ≈ 0)

up to certain nonzero ∆ (≤ 172 cm−1). Hence, for ∆ = 0, there exists a common diagonalizing

matrix, G for both the matrices (τρ and τφ), which can transform the adiabatic SE (see Eq. 29 of

main article) to the following form:
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− h̄
2

2
(∇R + Ω)2 Φ + (V − E) Φ = 0, (S100)

where ψad = GΦ, Ω = G†τG and V = G†UG.

For three state degeneracy (∆ = 0), the diagonalizing matrix (G) is found to be

G =


0 −i√

2
i√
2

−1√
2

1
2

1
2

1√
2

1
2

1
2


When the value of ∆ is low (≤172 cm−1), the magnitude of curl τ is negligibly small (curl τ ≈ 0) and

therefore, the above formulation is approximately valid. At this junction, one can impose classical

inaccessibility condition for each electronic state from others at and around a specific energy, i.e.,

|ψi| � |ψj| (i 6= j) and then, the single-surface EBO equations take the following form,

− h̄2

2m

{(
∂

∂ρ
+ iωρ

)2

+
1

ρ

(
∂

∂ρ
+ iωρ

)
+

1

ρ2

(
∂

∂φ
+ iωφ

)2
}

Φ1 + (u1 − E)Φ1 = 0, (S101a)

− h̄2

2m

{
∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂φ2

}
Φ2 + (u2 − E)Φ2 = 0, (S101b)

− h̄2

2m

{(
∂

∂ρ
− iωρ

)2

+
1

ρ

(
∂

∂ρ
− iωρ

)
+

1

ρ2

(
∂

∂φ
+ iωφ

)2
}

Φ3 + (u3 − E)Φ3 = 0, (S101c)

where u1, u2 and u3 are adiabatic PESs, and ωρ and ωφ are the two components of NACM eigenval-

ues. The angular component, ωφ (= A2

2w
) appears to be gauge invariant (

∫ 2π

0
ωφdφ = 2π) for three

state degeneracy, which in turn affirms the workability of the EBO equations (Eq. S101) over the

specific domain of nuclear configuration space (CS).

We have generated the photoabsorption spectra for the lower sheet of E ′ state of Na3 cluster

employing ordinary BO, EBO (Eq. S101a) and diabatic SEs (Eq. S97) with ∆ = 0 and 172 cm−1,

which are illustrated in Subsection 8.2.1 of the main article.
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S11 Formulation of Time-dependent 3D wave-packet methodology in

hyperspherical coordinates

The initial wave packet is represented in terms of 3− j symbols and modified spherical harmonics

(Cjµ) as:

Φa
K =

√
2π sin η J(Rrη|ρθφ)(2l + 1)φvj(r) χ(R)(−1)j−l

×
∑
µ

(
j l J

µ 0 −µ

)
Cjµ(η)AKµ, (S102)

where various terms carry their usual meaning.27,28

The diabatic Hamiltonian operator for the triatomic system is expressed in terms of Johnson’s

hyperspherical coordinates:29

Ĥ = {− h̄2

2µR

∂2

∂ρ2
+

2

µRρ2
L̂2(θ, φ)

+
Ĵ2 − Ĵ2

z

µRρ2 cos2 θ
+
Ĵ2
z − 4 cos θ ĴzP̂φ

2µRρ2 sin2 θ

+
sin θ

µRρ2 cos2 θ

1

2
[Ĵ2

+ + Ĵ2
−]}Î + V̂0(ρ, θ, φ), (S103)

where V̂0(ρ, θ, φ) denotes the (3×3) interaction (diabatic) potential matrix for the triatomic system,

and other operators are described elsewhere.30 The adiabatic K-component wavefunctions (Φa
K,I)

for different surfaces (I = 1, 2, 3) are transformed to the diabatic ones (Φd
K,I) by using the matrix

that diagonalizes V̂0(ρ, θ, φ). Thereafter, we obtain the following set of coupled equations in terms

of K-component waves (Φd
K,I) for all the three surfaces:

ih̄
∂

∂t


Φd
K,1

Φd
K,2

Φd
K,3

 =

{
− h̄2

2µR

∂2

∂ρ2
+

2

µRρ2
L̂2(θ, φ)

+
h̄K(h̄K − 4 cos θ P̂φ)

2µRρ2 sin2 θ
+
h̄2[J(J + 1)−K2]

µRρ2 cos2 θ

+∆V (ρ, θ)

}
Φd
K,1

Φd
K,2

Φd
K,3


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+


V11 + ∆V V12 V13

V21 V22 + ∆V V23

V31 V32 V33 + ∆V




Φd
K,1

Φd
K,2

Φd
K,3



+
sin θ

µRρ2 cos2 θ

MK,K+2


Φd
K+2,1

Φd
K+2,2

Φd
K+2,3



+MK,K−2


Φd
K−2,1

Φd
K−2,2

Φd
K−2,3


 , (S104)

where two K-component diabatic wavefunctions Φd
K,I and Φd

K±2,I are coupled via the coupling

element:

MK,K±2 =
h̄2

2

√
(J ∓K)(J ±K + 1)(J ∓K − 1)(J ±K + 2). (S105)

The time-dependent wave packet is projected31,32 onto asymptotic eigenstates at a fixed value of R

(= R∗) and the scattering amplitude in the channel specified by vibrational, rotational and orbital

quantum numbers v′, j′, l′ for different surfaces (I = 1, 2, 3) are obtained as:

uJ,Iv′j′l′(R
∗; t) = 4R∗

∫
dr

∫
dη r sin η ρ−5/2(sin 2θ)−1/2φIv′j′(r)

×
∑
Kµ′

gj′l′µ′A
∗
Kµ′Cj′µ′(η)Φa

K,I(ρ, θ, φ), (S106)

where at each step of the time propagation, the diabatic K-component wavefunctions (Φd
K,I) are

transformed back to the adiabatic ones (Φa
K,I)

28 30 for analysing the wavefunction.

Thereafter, the scattering amplitudes are Fourier transformed from time to energy domain after the

wave packet passes through the projection region and gets almost absorbed at the boundary.

bJ,Iv′j′l′(E;R) =
1√
2π

∫
dt uJ,Iv′j′l′(R; t) exp(iEt/h̄). (S107)

Those amplitudes are expanded in terms of incoming and outgoing waves as:

bJ,Iv′j′l′ = Ainv′j′l′kv′j′R h−(kv′j′R) + Aout,Iv′j′l′kv′j′R h+(kv′j′R), (S108)
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where

h±(kv′j′R) = −nl(kv′j′R)± ijl(kv′j′R), (S109)

with jl and nl being spherical Bessel and Neumann functions, respectively.

Moreover, we can perform a transformation from the unique adiabatic to the approximate diabatic

representation to obtain the amplitudes corresponding to the asymptotic product states as:

Φd
K,1 = Φa

K,1, r < rc

Φd
K,1 = Φa

K,2, r ≥ rc

Φd
K,2 = Φa

K,2, r < rc

Φd
K,2 = Φa

K,1, r ≥ rc (S110)

where the indices 1 and 2 represent the neutral (H2) and ionic (H+
2 ) products, respectively, and the

corresponding potential curves cross at rc. Thus, the scattering amplitudes can be evaluated as:

d1
v′,j′,l′ =

∑
v

{bJ,1v,j′,l′Sl
11
v,v′,j′ + bJ,2v,j′,l′Sr

21
v,v′,j′},

d2
v′,j′,l′ =

∑
v

{bJ,2v,j′,l′Sl
22
v,v′,j′ + bJ,1v,j′,l′Sr

12
v,v′,j′}, (S111)

where Sl and Sr are coupling elements between the vibrational wavefunctions:

SlII
′

v,v′,j′ =

∫ rc

0

φIvj′φ
I′

v′j′ ,

SrII
′

v,v′,j′ =

∫ ∞
rc

φIvj′φ
I′

v′j′ . (S112)

The state-to-state reaction probability on Ith surface could be calculated by taking the ratio of the

outgoing and incoming fluxes:

P I
v′j′l′←vjl =

F I
v′j′l′

Fvjl
, (S113)

where

F I
v′j′l′ =

1

µout
kv′j′|dIv′,j′,l′|2, (S114)

Fvjl =
1

µin
kvj|clE|2. (S115)
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and each terms carry their usual meaning.27 Indeed, for a Gaussian wave packet, the weight of the

scattering amplitudes in energy (E) and wave vector (k) space are related as:

|clE |2 =

(
µin
h̄k

)2√
2/π A0 exp[−2A2

0(k − k0)2], (S116)

with A0 being the width of the Gaussian wavepacket.

Finally, total integral cross sections (ICSs) at a particular collision energy are evaluated by sum-

ming over the reaction probabilities of all final rovibrational states for all values of total angular

momentum, J :

σ(E) =
π

κ2
vj

j′max∑
j′=0

v′max∑
v′=0

Jmax∑
J=0

(2J + 1)P J
v′j′←vj(E) (S117)

S11.1 The absorbing potential, propagation, projection and computation details

A negative imaginary potential [−iVIm(ρ)] is plugged in at the last 20% - 30% of ρ - grid points for

each hyperangles in order to avoid any unrealistic reflection. Therefore, the total potential can be

represented as:

V (ρ, θ, φ) = V0(ρ, θ, φ)− iVIm(ρ) , (S118)

where a linear absorbing potential33,34 of the following form is used in our present calculations:

VIm(ρ) =

Vopt · (ρ− ρI), ρI ≤ ρ

0, otherwise,

where Vopt controls minimum reflection from the boundary and ρI is the starting point of the ab-

sorbing potential. The various parameters employed in our dynamical calculations are depicted in

Table S7.

The intrinsically parallel version of the Fast Fourier Transformation (FFT)35 algorithm is utilized

to evaluate the kinetic energy operators, which efficiently scales the computational cost as cN logN ,

with N being the total number of grid points in hyperspherical coordinates. While evaluating the

kinetic energy operators on the wavefunction by FFT routine, the θ range is extended from π/2

to π and the associated amplitudes on the grid points are taken as reverse mirror image of those

from 0 to π/2 making the resulting function an odd function around θ = π/2. This extension of the
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domain of θ leads to sine transformation, where the amplitudes of the wavefunction automatically

become zero at θ = 0, π/2 and π. On the other hand, time propagation of the wave packet is

performed by using iterative Lanczos reduction technique.36 Moreover, we have implemented mixed

Open Multi-Processing (OpenMP) - Massage Passing Interface (MPI) parallelization scheme,28,30

which helps to overcome the huge computational demand.

Table S7: Dynamical parameters for initialization, projection, and absorbing potential: v = 0, j = 0;J =

0, 1, 2, ..., 34. [The numbers in the parenthesis are the corresponding transformed values in ρ - space.]

Grid size:

Nρ 256

Nθ 64

Nφ 128

(ρmin, ρmax)/Å (1.0, 10.0)

Translational wave packet:

R0/Å 5.50 (∼ 6.56)

Rf/Å 1.70 (∼ 2.75)

A0/Å 0.20

k0 (Å−1) 36.3523

Rovibrational energy:

Evj (eV) 0.269763

Propagation:

∆ t (fs) 0.050

Magnitude of the normalized five last Lanczos vectors 10−8 − 10−7

Absorbing potential:

Vopt/eV 0.163

ρI (Å) 8.0

Range of the absorbing potential (Å) 8.0 - 10.0

Projection:

R∗ (Å) 5.25 (∼ 6.45)

vib. states v′ = 0, · · · , 10

rot. states j′ = 0, · · · , 12
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