Electronic Supporting Information (ESI)

Proof-of-Principle of a Purine D-A-D' Ligand Based Ratiometric Chemical Sensor Harnessing Complexation Induced Intermolecular PET

Justina Jovaisaite,* Dace Cīrule, Andris Jeminejs, Irina Novosjolova, Māris Turks, Paulius Baronas, Regimantas Komskis, Sigitas Tumkevicius, Gediminas Jonusauskas* and Saulius Jursenas

Table of Contents

Expe	erime	ental Procedures			
1.	1. Materials and Methods				
1.	1	Steady-state (absorption, fluorescence and quantum yield) experiments	3		
1.	2	Time-resolved fluorescence and transient absorption experiments	4		
1.	3	Density Functional Theory (DFT) Calculations	4		
2.	Synt	thesis and product characterization	5		
Resu	ults				
3.	3. Optical properties				
4.	4. Theoretical calculations				
5.	NM	R titration experiments			
5.	1	Titration of compound 3 with Ca(ClO ₄) ₂ •4H ₂ O			
5.	2	Titration of compound 3 with Zn(ClO ₄) ₂ •6H ₂ O			
5.	3	Titration of compound 6 with Zn(ClO ₄) ₂ •6H ₂ O			
5.	4	Titration of compounds 2 and 4 with $Zn(ClO_4)_2 \bullet 6H_2O$ and $Ca(ClO_4)_2 \bullet 4H_2O$			
Refe	erenc	es			

Experimental Procedures

1. Materials and Methods

Spectroscopic measurements of compounds **1**, **2**, **3** and **4** were performed in ethyl acetate (EA), dimethoxyethane (DME) and acetonitrile (ACN), with respective dielectric constants (ϵ) of 6.02, 7.2 and 37.5. All solvents were purchased from Sigma Aldrich and were of spectroscopic or HPLC grade. Solvents of lower polarity could not be used due to low solubility of compounds in non-polar medium. The following salts for the UV and NMR titration experiments were also purchased from Sigma Aldrich: Cu(MeCN)₄BF₄, Fe(ClO₄)₂•H₂O, NaClO₄, Ca(ClO₄)₂•4H₂O, KClO₄ and Zn(ClO₄)₂•6H₂O.

Sample of **3** in 1% wt PMMA (poly(methyl methacrylate)) were made by dissolving material and polymer in chloroform. The initial concentration of 40 mg/ml were selected. The mixture was drop-casted on a quartz plate.

1.1 Steady-state (absorption, fluorescence and quantum yield) experiments

The concentrations for fluorescence quantum yield measurements were selected so the absorbance at excitation wavelength would be around 0.05. For absorption and fluorescence measurements (including titration experiments) the initial concentration of compounds was 10⁻⁵ M. The quartz cells of 1 cm were used.

The absorption spectra were taken with a spectrophotometer Varian-Cary 5G. The fluorescence spectra were performed using a FluoroMax-3 spectrofluorometer.

For titration experiments, the absorption spectra were measured on a UV–vis–near infrared spectrophotometer Lambda 950 (PerkinElmer); fluorescence spectra were measured using a back-thinned CCD spectrometer PMA-11 (Hamamatsu) and a xenon lamp coupled to a monochromator (full width at half-maximum < 10 meV) as an excitation source.

Fluorescence quantum yields were determined by comparative method. The concentrations of studied compounds in solvents and relative standard 9,10-Diphenylanthracene in cyclohexane ($\varphi^{fl} = 0.97$)¹ were selected so that OD would be around 0.05. The fluorescence quantum yields were calculated using:

$$\varphi_{s}^{fl} = \varphi_{0}^{fl} \frac{S_{s}A_{0}n_{s}^{2}}{S_{0}A_{s}n_{0}^{2}}.$$

Where φ_s^{fl} and φ_0^{fl} are the fluorescence quantum yields of the studied samples in solvents and the standard compound as reference, respectively; A_s and A_0 are the absorptions of samples and standard reference compounds, respectively; S_s and S_0 denotes areas underneath the curves of the fluorescence spectra of the sample solution and the standard reference, respectively; and n_s and n_0 are the refraction indices of solvents for the substance under study and the standard compound.

All steady-state fluorescence spectra were obtained by exiting samples to maxima of the lowest-energy absorption bands.

1.2 Time-resolved fluorescence and transient absorption experiments

For time-resolved fluorescence experiments, the concentration of all compounds were 10^{-5} M. The dilute samples in acetonitrile solution were investigated in 1 cm quartz cuvettes. In case of time-resolved fluorescence experiments with Ca(ClO₄)₂ and Zn(ClO₄)₂•6H₂O, the concentration of **3** in acetonitrile was 10^{-5} M adding 0.5 equivalents (5x10⁻⁶ M) of metal salts dissolved in acetonitrile. The initial concentration of 10^{-3} M of compound **3** and 5x10⁻⁴ M (0.5 equivalents) of Ca(ClO₄)₂ and Zn(ClO₄)₂•6H₂O in acetonitrile solution was used for femtosecond transient absorption experiments (in 1 mm quartz cuvettes).

Picosecond and nanosecond time-resolved fluorescence lifetimes of compounds **1**, **2**, **3** and **4** were obtained by methods described elsewhere,² using two streak camera set-ups.

Time-resolved fluorescence measurements of compound **3** with Ca²⁺ and Zn²⁺ metal ion salts in a picosecond time domain were performed with Streak Scope C10627 detector (Hamamatsu) coupled with femtosecond laser system Pharos-SP and Orpheus.

All time-resolved fluorescence experiments were done by exiting samples to maxima of the lowest-energy absorption bands.

Femtosecond transient absorption measurements were carried out using commercial spectrometer (Harpia, Light Conversion) pumped with wavelength-tunable optical parametric amplifier (Orpheus, Light Conversion) coupled to 190 fs, 10 kHz pulsed laser (Pharos-SP, Light Conversion). Probe source was white light continuum (WLC) pulses generated by focusing the fundamental 1030 nm harmonic in purified water flowing inside quartz cuvette coupled to home-built flow system. Angle between linearly polarized pump and probe pulses was set to approximately 54 degrees. Samples were excited at 320 nm and 350 nm.

The transient absorption measurements were analyzed by fitting decays as described further. The decays were taken at the positions of spectral features of interest in spectral windows not exceeding 2 nm width. All lifetimes were obtained by fitting decays in Origin using an analytical solution of a set of two differential equations:

$$\begin{cases} \frac{dN_1}{dt} = Gauss(\tau, t0) - \frac{N_1}{\tau 1} \\ \frac{dN_2}{dt} = \frac{N_1}{\tau 1} - \frac{N_2}{\tau 2} \end{cases}.$$

Where Gauss(τ ,t0) describes the Gaussian shape excitation pulse with FWHM of τ , N1 and N2 are the populations of states. The initial conditions are N1(0)=N2(0)=0. The final kinetic is obtained by:

$$A(t) = A1 * N_1(t) + A2 * N_2(t).$$

1.3 Density Functional Theory (DFT) Calculations

Ground state molecular geometry was optimized and evaluated by employing DFT methodology with a BMK functional at a 6-31g (d,p) basis set level. Spatial one electron HOMO and LUMO orbital distribution and ground to excited state transition energies with appropriate oscillator strengths were compared using BMK functional at a 6-31g (d,p) basis set level in vacuum.

2. Synthesis and product characterization

Yields refer to chromatographically and spectroscopically homogeneous materials. ¹H-NMR spectra were recorded at 500 and 300 MHz with internal references from residual non-deuterated solvents (δ 7.26 for CDCl₃ and δ 2.50 for DMSO-d₆). ¹³C-NMR spectra were recorded at 125.7 and 75.5 MHz with internal references from solvent carbon signals (δ 77.1 for CDCl₃ and δ 39.5 for DMSO-d₆). Coupling constants were reported in Hz. Infrared spectra were registered using Perkin Elmer Spectrum BX spectrometer and reported in cm⁻¹. Analytical thin layer chromatography (TLC) was performed on Merck silica gel 60 F254 aluminium plates precoated with a 0.25 mm layer of silica gel. For HPLC analyses Agilent Technologies 1200 Series system was used (X Bridge C18 column, 4.6×150 mm, particle size 3.5 µm). Eluent A – 0.01 M KH₂PO₄ water solution/ACN (94/6, V/V), eluent B – ACN. Gradient: 10–95% B 7 min, 95% B 3 min, 95–10% B 2 min. Flow rate: 1 mL/min. Wavelength of detection was set to 260 nm. HRMS analysis was performed on Agilent 1290 Infinity series UPLC system, connected to Agilent 6230 TOF LC/MS mass spectrometer; column Extend C18 RRHD 2.1×50 mm, 1.8 µm. Eluents: formic acid (0.1%) in ACN and formic acid in water (0.1%).

General procedure for the synthesis of 9-(3',5'-di-O-acetyl-2'-deoxy-β-D-ribofuranosyl)-2,6-bis-(1H-1,2,3-triazol-1-yl)-9H-purine derivatives 1-4

Corresponding acetylene (5.0 eq.) and 10% AcOH aqueous solution were subsequently added to a stirred solution of $9-(3',5'-di-O-acetyl-2'-deoxy-\beta-D-ribofuranosyl)-2,6-diazidopurine ^{3,4} ($ **A**, 1.0 eq.) in*t*-BuOH (8–100 mL). Then CuSO₄·5H₂O and sodium ascorbate were separately dissolved in H₂O (3 mL) and added to the mixture. The reaction mixture was covered with aluminium foil and stirred for 18–24 h at 30–50 °C, controlled by HPLC. Then the reaction mixture was evaporated, dissolved in DCM (60 mL) and washed with saturated NaHCO₃ solution (3×15 mL). Organic phase was evaporated, dried*in vacuo*(12 h, 10 Torr) and purified by column chromatography.

9-(3',5'-Di-O-acetyl-2'-deoxy-β-D-ribofuranosyl)-2,6-bis-(4-methoxycarbonyl-1H-1,2,3-triazol-1-yl)-9H-purine (1)

The compound **1** was synthesized according to general procedure: diazide **A** (1.36 g, 3.38 mmol, 1.0 eq.), methylpropiolate (1.66 mL, ρ = 0.945 g/mL, 18.64 mmol, 5.0 eq.), *t*-BuOH (55 mL), 10% AcOH aq. solution (17 mL), CuSO₄·5H₂O (102 mg, 0.41 mmol, 12 mol-%), sodium ascorbate (148 mg, 0.75 mmol, 22 mol-%). Reaction conditions: 18 h 35 °C. Purified with column chromatography (100% ethyl acetate).

Yield: 1.20 g, 62%. Slightly yellow foam, $R_f = 0.45$ (EtOAc/MeCN = 10/1), $t_R = 4.016$ min. IR (KBr) v (cm⁻¹): 3145, 2955, 1740, 1615, 1590, 1480, 1330, 1235, 1030. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.62 (s, 1H, H-C(triazole(6)), 9.28 (s, 1H, H-C(triazole(2))), 8.62 (s, 1H, H-C(8)), 6.71 (dd, 1H, ${}^{3}J_{1'-2a'} = 7.5$ Hz, ${}^{3}J_{1'-2b'} = 6.1$ Hz, H-C(1')), 5.52–5.45 (m, 1H, H-C(3')), 4.52–4.36 (m, 3H, H-C(4'), H₂C(5')), 4.02 (s, 6H, 2×(-CH₃)), 2.94 (ddd, 1H, ${}^{3}J_{1'-2a'} = 7.5$ Hz, ${}^{2}J_{2a'-2b'} = 14.2$ Hz, ${}^{3}J_{2a'-3'} = 6.7$ Hz, Ha-C(2')), 2.85 (ddd,

1H, ${}^{3}J_{1'-2b'} = 6.1$ Hz, ${}^{2}J_{2a'-2b'} = 14.2$ Hz, ${}^{3}J_{2b'-3'} = 2.8$ Hz, Hb-C(2')), 2.18, 2.10 (2s, 6H, H₃CC(O)O-C(3',5')). ${}^{13}C$ NMR (75.5 MHz, DMSO-d₆) δ (ppm): 170.08, 170.05, 160.3, 160.1, 155.5, 148.2, 147.0, 144.2, 139.4, 139.2, 129.0, 128.8, 123.4, 84.2, 82.2, 74.1, 63.5, 52.3, 52.1, 35.8, 20.8, 20.5. HRMS (ESI) m/z [M+H]⁺ calcd for C₂₂H₂₂N₁₀O₉: 571.1644; found 571.1653 (1.58 ppm).

9-(3',5'-Di-O-acetyl-2'-deoxy-β-D-ribofuranosyl)-2,6-bis-(4-phenyl-1H-1,2,3-triazol-1-yl)-9H-purine (2)

The compound **2** was synthesized according to general procedure: diazide **A** (3.00 g, 7.46 mmol, 1.0 eq.), phenylacetylene (4.10 mL, $\rho = 0.930$ g/mL, 37.30 mmol, 5.0 eq.), *t*-BuOH (100 mL), 10% AcOH aq. solution (35 mL), CuSO₄·5H₂O (307 mg, 1.23 mmol, 17 mol-%), sodium asc. (443 mg, 2.24 mmol, 30 mol-%). Reaction conditions: 24 h 35 °C. Purified with column chromatography (ACN/Tol; gradient 20% \rightarrow 33%).

Yield: 2.81 g, 62%. Colorless amorphous solid, $R_f = 0.67$ (ACN/Tol = 1/1), $t_R = 6.074$ min. IR (KBr) v (cm⁻¹): 3145, 2945, 1740, 1610, 1585, 1475, 1365, 1230, 1005. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 9.21 (s, 1H, H-C(triazole(6))), 8.91 (s, 1H, H-C(triazole(2))), 8.45 (s, 1H, H-C(8)), 7.96 (ddd, 4H, ³J = 8.5 Hz, ⁴J = 2.5 Hz, ⁵J = 1.4 Hz, Ar), 7.48–7.39 (m, 4H, Ar), 7.39–7.31 (m, 2H, Ar), 6.66 (dd, 1H, ³J_{1'-2a'} = 7.3 Hz, ³J_{1'-2b'} = 6.2 Hz, H-C(1')), 5.55 (dt, 1H, ³J_{2a'-3'} = 6.5 Hz, ³J_{2b'-3'} = ³J_{3'-4'} = 2.8 Hz, H-C(3')), 4.48–4.39 (m, 3H, H-C(4'), H₂C(5')), 3.05 (ddd, 1H, ³J_{1'-2a'} = 7.3 Hz, ²J_{2a'-2b'} = 14.3 Hz, ³J_{2a'}.

 $_{3'}$ = 6.5 Hz, Ha-C(2')), 2.84 (ddd, 1H, ${}^{3}J_{1'-2b'}$ = 6.2 Hz, ${}^{2}J_{2a'-2b'}$ = 14.3 Hz, ${}^{3}J_{2b'-3'}$ = 2.8 Hz, Hb-C(2')), 2.18, 2.07 (2s, 6H, H₃CC(O)O-C(3',5')). 13 C NMR (75.5 MHz, CDCl₃) δ (ppm): 170.5, 170.4, 155.0, 148.7, 148.4, 148.3, 145.4, 129.7, 129.4, 129.1 (3C)¹, 129.0, 128.8, 126.3, 126.1, 122.6, 119.6, 119.0, 85.2, 83.1, 74.2, 63.7, 38.1, 21.1, 20.9. HRMS (ESI) m/z [M+H]⁺ calcd for C₃₀H₂₆N₁₀O₅: 607.2160; found 607.2161 (0.16 ppm).

¹ This signal was assigned from HSQC spectrum.

9-(3',5'-Di-O-acetyl-2'-deoxy-β-D-ribofuranosyl)-2,6-bis-[4-(4-methoxyphenyl)-1H- 1,2,3-triazol-1-yl]-9H-purine (3)

The compound 3 was synthesized according to general procedure: diazide A (200 mg, 0.50 mmol, 1.0 eq.), 4-methoxy-phenylacetylene (329

mg, 2.49 mmol, 5.0 eq.), *t*-BuOH (8 mL), 10% AcOH aq. solution (5 mL), $CuSO_4 \cdot 5H_2O$ (20 mg, 0.08 mmol, 16 mol-%), sodium ascorbate (31 mg, 0.16 mmol, 32 mol-%). Reaction conditions: 24 h 30 °C. Purified with column chromatography (ACN/Tol; gradient 15% \rightarrow 33%).

Yield: 250 mg, 75%. Slightly yellow foam, $R_f = 0.51$ (ACN/Tol = 1/2), tR = 5.942 min. IR (KBr) v (cm⁻¹): 3145, 3000, 2945, 2840, 1740, 1615, 1585, 1455, 1250, 1175, 1015, 1000. ¹H NMR (300 MHz, DMSO-d₆) δ (ppm): 9.61 (s, 1H, H-C(triazole(6))), 9.48 (s, H, H-C(triazole(2))), 9.06 (s, 1H, H-C(8)), 8.00 (d, 2H, ³J = 7.3 Hz, Ar), 7.98 (d, 2H, ³J = 7.7 Hz, Ar), 7.08 (d, 2H, ³J = 7.7 Hz, Ar), 7.07 (d, 2H, ³J = 7.3 Hz, Ar), 6.64 (dd, 1H, ³J_{1'-2a'} = 7.3 Hz, ³J_{1'-2b'} = 6.5 Hz, H-C(1')), 5.60 (dt, 1H, ³J_{2a'-3'} = 6.7 Hz, ³J_{2b'-3'} = ³J_{3'-4'} = 2.9 Hz, H-C(3')), 4.40 (dd, 1H, ³J_{4'-5a'} = 3.7 Hz, ²J_{5a'-5b'} = 13.0 Hz, Ha-C(5')), 4.41–4.34 (m, 1H, H-C(4')), 4.32 (dd, 1H, ³J_{4'-5b'} = 5.0 Hz, ²J_{5a'-5b'} = 13.0 Hz,

Hb-C(5')), 3.82 (s, 6H, 2×(-CH₃)), 3.27 (ddd, 1H, ${}^{3}J_{1'-2a'} = 7.3$ Hz, ${}^{2}J_{2a'-2b'} = 14.4$ Hz, ${}^{3}J_{2a'-3'} = 6.7$ Hz, Ha-C(2')), 2.76 (ddd, 1H, ${}^{3}J_{1'-2b'} = 6.5$ Hz, ${}^{2}J_{2a'-2b'} = 14.4$ Hz, ${}^{3}J_{2a'-3'} = 6.7$ Hz, Ha-C(2')), 2.76 (ddd, 1H, ${}^{3}J_{1'-2b'} = 6.5$ Hz, ${}^{2}J_{2a'-2b'} = 14.4$ Hz, ${}^{3}J_{2b'-3'} = 2.9$ Hz, Hb-C(2')), 2.16, 1.99 (2s, 6H, H₃CC(O)O-C(3',5')). ${}^{13}C$ NMR (75.5 MHz, DMSO-d6) δ (ppm): 170.2 (2C)*, 159.7, 159.5, 155.2, 147.6, 147.5, 146.95, 146.87, 144.7, 127.2, 127.0, 122.7, 122.2, 121.8, 119.3 (2C)², 114.5, 114.4, 84.2, 82.2, 74.1, 63.5, 55.2 (2C)*, 35.7, 20.8, 20.5. HRMS (ESI) m/z [*M*+H]⁺ calcd for C₃₂H₃₀N₁₀O₇: 667.2383; found 667.2375 (1.20 ppm).

² These signals were assigned from HSQC spectrum.

Figure S7. HSQC spectrum of compound 3.

Figure S8. NOESY spectrum of compound 3 (500 MHz, CDCl₃).

The compound **4** is synthesized according to general procedure: diazide **A** (735 mg, 1.83 mmol, 1.0 eq.), 4'-dimethyl-aminophenylacetylene (1.06 g, 7.31 mmol, 4.0 eq.), *t*-BuOH (25 mL), 10% AcOH aq. solution (8 mL), $CuSO_4 \cdot 5H_2O$ (25 mg, 0.10 mmol, 6 mol-%), sodium ascorbate (36 mg, 0.18 mmol, 10 mol-%). Reaction conditions: 24 h 50 °C. Purified with column chromatography (ACN/Tol; gradient 9% \rightarrow 40%).

Yield: 200 mg, 16 %. Yellow solid. R_f = 0.64 (ACN/Tol 1:1). ¹H NMR (500 MHz, CDCl₃) δ (ppm): 9.07(s, H, H-C(triazole(6))), 8.76 (s, H, H-C(triazole(2))), 8.48 (s, 1H, H-C(8)), 7.85 (d, 2H, ³J = 8.5 Hz, Ar), 7.83 (d, 2H, ³J = 8.5 Hz, Ar), 6.77 (d, 2H, ³J = 8.5 Hz, Ar), 6.76 (d, 2H, ³J = 8.5 Hz, Ar), 6.66 (dd, 1H, ³J_{1'-2a'} = 7.2 Hz, ³J_{1'-2b'} = 5.9 Hz, H-C(1')), 5.54 (dt, 1H, ³J_{2a'-3'} = 6.7 Hz, ³J_{2b'-3'} = ³J_{3'-4'} = 2.9 Hz, H-C(3')), 4.49-4.40 (m, 3H, H-C(4'), H₂-C(5')), 3.05-3.01 (m, 1H, Ha-C(2')), 3.00 (2s, 12H, 4×(-CH₃)), 2.85 (ddd, 1H, ³J_{1'-2b'} = 5.9 Hz, ²J_{2a'-2b'} = 14.1 Hz, ³J_{2b'-3'} = 2.9 Hz, Hb-C(2')),

2.18, 2.09 (2s, 6H, H₃CC(O)O-C(3',5')). ¹³C NMR (75.5 MHz, CDCl₃) δ (ppm): 170.51, 170.49, 155.0, 150.9, 150.7, 148.93, 148.88, 148.7, 145.6, 144.9, 127.3, 127.1, 122.4, 117.5, 117.2, 112.5 (4C)³, 85.1, 83.1, 74.4, 63.8, 40.6, 40.5, 38.2, 21.1, 21.0. HRMS (ESI) *m/z* [*M*+Na]⁺ calcd for C₃₄H₃₆N₁₂O₅: 715.2829; found 715.2809 (2.80 ppm).

³ This signal was assigned from HSQC spectrum.

Figure S10. ¹³C NMR (125.7 MHz, CDCl₃) spectrum of compound 4.

Tautomeric mixture of 7-heptyl-7H-tetrazolo[1,5-i]purine (5-T) and 6-azido-7-heptyl-9H-purine (5-A)

n-Heptyl alcohol (2.2 mL, $\rho = 0.82$ g/mL, 15.5 mmol, 1.2 eq.) was added to solution of 6-chloropurine (2.0 g, 12.9 mmol, 1.0 equiv.) and triphenylphosphine (4.4 g, 16.8 mmol, 1.3 eq.) in anhydrous THF (20 mL) under argon. This mixture was cooled to 0 °C in NaCl-ice bath. DIAD (3.3 mL, $\rho = 1.03$ g/mL, 16.8 mmol, 1.3 eq.) was then added in small portions (0.25 mL). In this stage temperature was not allowed to exceed 4 °C and the whole amount of DIAD was added in one hour. Afterwards the reaction vessel was stirred at r.t. for another hour. The volatiles were evaporated and the oily residue was suspended in DMF (10 mL). Sodium azide (1.7 g, 25.9 mmol, 2.0 eq.) was added and the mixture was stirred at 50°C for 24 hours. After completion of the reaction the mixture was suspended in EtOAc (50 mL) and washed with brine (5×10 mL) and water (3×5 mL). The organic phase was dried with anh. Na₂SO₄, filtered, evaporated, crystallised from cold hexane (50 mL) and dried *in vacuo* (12 h, 10 Torr) to yield 1.78 g (53%) of compound **5**.

Only the tetrazole form was characterized from a 35 : 65 mixture of 5-A/5-T:

¹H NMR (CDCl₃, 300 MHz, 25 °C) δ (ppm): 9.49 (s, 1H, H-C(5)), 8.17 (s, 1H, H-C(7)), 4.41 (t, 2H, ³*J* = 7.2 Hz, H₂-C(1')), 1.98 (quintet, 2H, ³*J* = 7.2 Hz, H₂-C(2')), 1.39–1.29 (m, 8H, 4×(-CH₂-)), 0.87 (t, 3H, ³*J* = 6.9 Hz, (-CH₃)). Spectral data matches with literature.⁵

9-heptyl-6-[4-(4-methoxyphenyl)-1H-1,2,3-triazol-1-yl]-9H-purine (6)

Corresponding acetylene (1.79 mmol, 2.0 eq.), acetic acid (60 µL, 0.98 mmol, 1.1 eq.) and triethylamine (0.14 mL, ρ = 0.73 g/mL, 0.98 mmol, 1.1 eq.) were subsequently added to stirred solution of **5** (0.23 g, 0.89 mmol, 1.0 eq.) in DCM (15 mL). Then copper (I) iodide (25 mg, 0.13 mmol, 15 mol-%) was added and the misture was stirred at room temperature for 24 hours. After the completion of the reaction the mixture was washed with NaHS/H₂O solution (5×3 mL) and the organic phase was dried with anh. Na₂SO₄, filtered, evaporated, and recrystallised from hexane (≈70 mL) and dried *in vacuo* (12 h, 10 Torr) to yield 0.13 g (37%) of compound **6**. Slightly yellow solid, R_f = 0.85 (DCM/MeOH 4:1). ¹H NMR (500 MHz, CDCl₃) δ 9.22 (s, 1H, H-C(triazole), 8.96 (s, 1H, H-C(2)), 8.24 (s, 1H, H-C(8)), 7.94 (d, 2H, ³J = 8.6 Hz, 2×H-C(Ar)), 7.01 (d, 2H, ³J = 8.6 Hz, 2×H-C(Ar)), 4.36 (t, 2H, ³J = 7.2 Hz, H₂-C(1')), 3.87 (s, 3H, (-OMe))), 1.98 (quintet, 2H, ³J = 7.2 Hz, H₂-C(2')), 1.40–1.25 (m, 8H, 4×(-CH₂-)), 0.87 (t, 3H, ³J = 6.8 Hz, (-CH₃)).

¹³C NMR (125.7 MHz, CDCl₃) δ 160.2, 154.7, 152.3, 148.2, 146.0, 145.0, 127.7, 122.8, 122.7, 118.8, 114.5, 55.5, 44.6, 31.7, 30.0, 28.8, 26.7, 22.6, 14.1. HRMS (ESI) m/z [M+H]⁺ calcd for C₂₁H₂₆N₇O: 392.2193; found 392.2187 (1.53 ppm).

Figure S11. ¹H NMR (500 MHz, CDCl₃) spectrum of compound 6.

Figure S12. ¹³C NMR (125.7 MHz, CDCl₃) spectrum of compound 6.

Results

3. Optical properties

No aggregation of ligands was observed at concentrations, used to obtain the experimental results that are presented in this paper.

Figure S13. Absorption spectra normalized to maxima of red-side absorption bands of compounds **1**, **2**, **3** and **4** (from left to right) in solutions of different dielectric constants: ethyl acetate (EA), dimethoxyethane (DME) and acetonitrile (ACN).

Figure S14. Normalized fluorescence spectra of 1 (a), 2 (b), 3 (c) and 4 (d) in EA, DME and ACN. Represented spectra of compound 2 in EA and 4 in ACN are sums of two Gaussian peak functions (see Figure S15 for original spectra).

Figure S15. Two Gaussian peak function fits (decomposition) of fluorescence spectra of compounds 2, 3 and 4 in EA, DME, ACN.

Compound	Fitted at	τ ₁ , ns	τ ₂ , ns
1	358 nm	0.79	1.77
2	390 nm	0.057	0.84
2	432 nm	0.16	3.41
2	390 nm		2.41
3	480 nm		4.40
3 + 0.5Ca ²⁺	480 nm		4.57
3 + 0.5Zn ²⁺	480 nm		4.44
	450 nm	0.56	6.00
4	645 nm	0.31	2.71

Table S1. Fluorescence decay lifetimes of compounds 1, 2, 3 and 4 in ACN.

Figure S16. Absorption (left) and fluorescence (right) spectra of **3** upon titration with different metal ions from top to bottom : Na⁺, K⁺, Ca²⁺, Fe²⁺, Cu⁺, Zn²⁺. The equivalents of metal ions in the solution with **3** (ACN, 10⁻⁵ M) are given in legends of each graph. Excited at 320 nm.

Figure S17. The response of **3** "blue" branch emission (recorded at 400 nm) to metal ion equivalents in ACN. Initial concentration of **3** is 10^{-5} M, excited at 320 nm.

Figure S18. Transient absorption maps of molecule **3** (a), molecule **3** and 0.5 equivalent of Ca^{2+} (b), molecule **3** and 0.5 equivalent of Zn^{2+} (c), obtained by exciting samples at 320 nm. All samples were dissolved in ACN. Initial concentration of **3** was 10^{-3} M. Two main positive absorption regions are marked as region I and region II. White letters **a**, **b** and **c** denotes different absorption bands in region I.

Figure S19. Transient absorption maps of molecule **3** (a), molecule **3** and 0.5 equivalent of Ca^{2+} (b), molecule **3** and 0.5 equivalent of Zn^{2+} (c), obtained by exciting samples at 350 nm. All samples were dissolved in ACN. Initial concentration of **3** was 10^{-3} M. Two main positive absorption regions are marked as region I and region II. White letters **b** and **c** denotes different absorption bands in region I.

Figure S20. Transient absorption decays of compound **3** without metal salts obtained at band **c** (465 nm) by exciting at 320 nm (a) and of compound **3** with 0.5 equivalent of Zn^{2+} in region **II** (620 nm) by exciting at both 320 nm and 350 nm wavelengths (b). One notice a slight overlap of excitation spectra for the "red" and "blue" branches at 350 nm in (b).

Figure S21. Transient absorption spectra of compound 3 in 1% wt PMMA matrix, recorded at 10 ps delay. Excitation wavelength 320 nm.

4. Theoretical calculations

Table S2. Fundamental molecular orbitals and their energies, optical transition energies and appropriate oscillator strengths of compound **1** in optimized ground state geometry. The geometry optimization as well as optical transition properties were evaluated with DFT approximation and BMK functional at 6-31g (d,p) basis set level in vacuum.

	НОМО		LUMO	Transition energy (eV)	Oscillator strength
-7.99 eV	Homo →	-1.96 eV LUMO (LE ₁)		4.59	0.331
-7.99 eV	HOMO -> L	-1.11 eV -UMO+1 (LE ₂)		5.06	0.123
-9.26 eV	HOMO-1 -	-1.96 eV → LUMO (LE₃)		5.67	0.227
-9.84 eV	номо-2 -	-1.96 eV → LUMO (LE4)		6.11	0.173
-7.99 eV	HOMO → L	+0.02 eV UMO+2 (CT ₁)		6.52	0.154
-9.26 eV	HOMO-1 →	-1.11 eV LUMO+1 (LE ₅)		6.61	0.126
-7.99 eV	номо → L	+0.10 eV UMO+3 (CT ₂)		6.65	0.238

Table S3. Fundamental molecular orbitals and their energies, optical transition energies and appropriate oscillator strengths of compound **2** in optimized ground state geometry. The geometry optimization as well as optical transition properties were evaluated with DFT approximation and BMK functional at 6-31g (d,p) basis set level in vacuum.

	НОМО		Transition energy (eV)	Oscillator strength	
-6.80 eV	A A A A A A A A A A A A A A A A A A A	-1.54 eV		4.04	0.353
Н	OMO ("Red" branch donor) ·	\rightarrow LUMO (Purine	acceptor) (CT ₁)		
-6.92 eV	MQ-1 ("Blue" branch donor)	-1.54 eV → LUMO (Purin	e accentor) (CT ₂)	4.27	0.333
-6.80 eV	AL AL AL	-0.73 eV		4.75	0.280
НО	MO ("Red" branch donor) \rightarrow	LUMO+1 (Purin	e acceptor) (CT₃)		
-6.92 eV		-0.73 eV		4.75	0.280
HOMO-1 ("Blue" branch donor) \rightarrow LUMO+1 (Purine acceptor) (CT ₄)					
-7.88 eV	A SUS	-1.54 eV		4.90	0.183
ŀ					
-8.78 eV		-1.54 eV		5.35	0.213
H	HOMO-3 (Purine acceptor) \rightarrow	LUMO (Purine	acceptor) (LE ₂)		
-6.92 eV	4)0	+0.14 eV		5.51	0.462
HOMO-1 ("Blue" branch donor) \rightarrow LUMO+2 ("Blue" branch donor) (LE ₃)					
-6.80 eV HOM	10 ("Red" branch donor) \rightarrow L	+0.28 eV UMO+3 ("Red" k	pranch donor) (LE4)	5.55	0.210

Table S4. Fundamental molecular orbitals and their energies, optical transition energies and appropriate oscillator strengths of compound **3** in optimized ground state geometry. The geometry optimization as well as optical transition properties were evaluated with DFT approximation and BMK functional at 6-31g (d,p) basis set level in vacuum.

	НОМО		LUMO	Transition energy (eV)	Oscillator strength
-6.27 eV		-1.44 eV		3.72	0.320
	HOWO (Red branch donor)				
-6.40 eV	~ () CO	-1.44 eV		3.97	0.270
	HOMO-1 ("Blue" branch donor	\rightarrow LUMO (Puri	ne acceptor) (CT_2)		
-6.27 eV	A TATA SOL	-0.617 eV		4.52	0.250
	HOMO ("Red" branch donor) ->	LUMO+1 (Purin	ne acceptor) (CT ₃)		
-6.40 eV		-0.617 eV		4.69	0.054
	HOMO-1 (Blue branch donor)				
-8.78 eV		-1.44 eV		5.25	0.340
	HOMO-2 (Purine acceptor) –	→ LUMO (Purine	acceptor) (LE ₁)		
-6.40 eV	SOLO STATES	+0.42 eV	AS CONTRACT	5.30	0.694
HOMO-1 ("Blue" branch donor) \rightarrow LUMO+2 ("Blue" branch donor) (LE ₂)					
-6.27 eV	A TATA ON	+0.56 eV	A TYTE CON	5.33	0.124
HOMO ("Red" branch donor) \rightarrow LUMO+3 ("Red" branch donor) (LE ₃)					

Table S5. Fundamental molecular orbitals and their energies, optical transition energies and appropriate oscillator strengths of compound **4** in optimized ground state geometry. The geometry optimization as well as optical transition properties were evaluated with DFT approximation and BMK functional at 6-31g (d,p) basis set level in vacuum.

	НОМО	MO LUMO		Transition energy (eV)	Oscillator strength
-5.55 eV	HOMO ("Red" branch donor)	-1.26 eV	accentor) (CT.)	3.32	0.301
-5.67 eV	HOMO (Ked Branch donor)	-1.26 eV	ne acceptor) (CT ₂)	3.56	0.232
-5.55 eV	HOMO ("Red" branch donor) →	-0.40 eV	ne acceptor) (CT ₃)	4.19	0.238
-5.67 eV	DMO-1 ("Blue" branch donor)	-0.40 eV	ine accentor) (CT_)	4.28	0.074
-5.67 eV		+0.68 eV	// hereach denor/ (LT)	4.89	1.000
-5.55 eV		+0.82 eV		4.96	0.283
HC -8.55 eV	IVIU ("Rea" branch donor) → L	-1.26 eV	pranch donor) (LE2)	5.70	0.263
HOMO-2 (Purine acceptor) \rightarrow LUMO (Purine acceptor) (LE ₃)					

Table S6. HOMO, HOMO-1, LUMO and LUMO+1 energies in an optimized ground state geometry, obtained with BMK functional at a 6-31g (d,p) basis set level in vacuum.

Compound	HOMO	energy, eV	LUMO energy, eV		
1	0	-7.990	0	-1.960	
1	-1	-8.526	+1	-1.106	
2	0	-6.795	0	-1.540	
2	-1	-6.924	+1	-0.725	
2	0	-6.268	0	-1.439	
3	-1	-6.400	+1	-0.617	
4	0	-5.547	0	-1.258	
4	-1	-5.672	+1	-0.399	

5. NMR titration experiments

5.1 Titration of compound 3 with Ca(ClO₄)₂•4H₂O

A reference ¹H NMR spectrum of 0.01 M solution of compound **3** (6.66 mg, 10 μmol) in CD₃CN (0.5 mL) containing benzene as internal standard was registered at 50 °C.⁴

Then Ca(ClO₄)₂•4H₂O solution containing benzene as internal standard was prepared: Ca(ClO₄)₂•4H₂O (20.0 mg, 64 μ mol) and C₆H₆ (1 μ L) were solubilized in CD₃CN (0.840 g, 1.00 mL, ρ = 0.84 g/mL) to obtain a solution with [Ca²⁺] 64 μ mol/mL

The samples containing various ratios of compound **3** and Ca(ClO₄)₂•4H₂O were prepared as follows: compound **3** (6.82 mg, 10.2 µmol) was dissolved in CD₃CN (0.1 mL) and mixed with calculated amount of Ca(ClO₄)₂•4H₂O/C₆H₆ solution in CD₃CN ([Ca²⁺] 64 µmol/mL; step 0.025 equiv. = 0.255 µmol = 4 µL of solution). The resulting mixture was diluted with CD₃CN to the final volume 0.5 mL.

The resulting final limpid mixture was shaken, let to complex and analyzed by NMR at 50 °C (Figures S20, S21).

Figure S22. ¹H-NMR (500 MHz, CD₃CN with benzene as standard, 50°C) titration of compound **3** with Ca(ClO₄)₂·4H₂O.

⁴ Preliminary experiments at various temperatures (-20, -10, 0, 10, 20, 30, 40, 50 °C) revealed, that the complexation equilibria existing in the solution lead to intermediate exchange or even vanishing of ¹H signals at temperatures < 50 °C. Coalescence temperature was determined to be ~40 °C.

The obtained ¹H NMR spectra were calibrated on benzene as internal standard. For each signal its chemical shift change ($\Delta\delta$, ppm) arising from the added salt was calculated. A titration curve as dependence of chemical shift change ($\Delta\delta$, ppm) from the added amount of salt (molar equivalents against purine derivative **3**) was constructed (Figure S21).

Saturation of titration curves was observed at molar ratio compound $3: Ca(ClO_4)_2 \bullet 4H_2O = 3: 1$

Figure S23. Chemical shift change ($\Delta\delta$, ppm) as a function from added amount of Ca(ClO₄)₂•4H₂O. Only the signals with significant chemical shift changes are provided.

5.2 Titration of compound 3 with Zn(ClO₄)₂•6H₂O

A reference ¹H NMR spectrum of 0.01 M solution of compound **3** (6.66 mg, 10 μmol) in CD₃CN (0.5 mL) containing benzene as internal standard was registered at 50 °C.⁵

Then $Zn(ClO_4)_2 \bullet 6H_2O$ solution containing benzene as internal standard was prepared: $Zn(ClO_4)_2 \bullet 6H_2O$ (23.5 mg, 63 µmol) and C_6H_6 (1 µL) were solubilized in CD₃CN (0.840 g, 1.00 mL, $\rho = 0.84$ g/mL) to obtain a solution with [Zn^{2+}] 63 µmol/mL

The samples containing various ratios of compound **3** and $Zn(ClO_4)_2 \bullet 6H_2O$ were prepared as follows: compound **3** (6.73 mg, 10.1 μ mol) was dissolved in CD₃CN (0.1 mL) and mixed with calculated amount of $Zn(ClO_4)_2 \bullet 6H_2O/C_6H_6$ solution in CD₃CN ([Zn²⁺] 63 μ mol/mL; step 0.025 equiv. = 0.253 μ mol = 4 μ L of solution). The resulting mixture was diluted with CD₃CN to the final volume 0.5 mL. The resulting final limpid mixture was shaken, let to complex and analyzed by NMR at 50 °C (Figures S22, S23).

Figure S24. ¹H-NMR (500 MHz, CD₃CN with benzene as standard, 50°C) titration of compound **3** with $Zn(ClO_4)_2 \cdot 6H_2O$.

⁵ Preliminary experiments at various temperatures (-20, -10, 0, 10, 20, 30, 40, 50 °C) revealed, that the complexation equilibria existing in the solution lead to intermediate exchange or even vanishing of ¹H signals at temperatures < 50 °C. Coalescence temperature was determined to be ~40 °C.

The obtained ¹H NMR spectra were calibrated on benzene as internal standard. For each signal its chemical shift change ($\Delta\delta$, ppm) arising from the added salt was calculated. A titration curve as dependence of chemical shift change ($\Delta\delta$, ppm) from the added amount of salt (molar equivalents against purine derivative **3**) was constructed (Figure S21).

Saturation of titration curves was observed at molar ratio compound $3: Zn(ClO_4)_2 \bullet 6H_2O = 3: 1$

Figure S25. Chemical shift change ($\Delta\delta$, ppm) as a function from added amount of Zn(ClO₄)₂•6H₂O. Only the signals with significant chemical shift changes are provided.

5.3 Titration of compound 6 with Zn(ClO₄)₂•6H₂O

The NMR titration experiments of 9-heptyl-6-[4-(4-methoxyphenyl)-1*H*-1,2,3-triazol-1-yl]-9*H*-purine **6** with Zn²⁺ ions were carried out. The switch to heptyl group at purine N9 position was implemented due to the solubility and stability issues. The samples were prepared according to general procedure, as previously mentioned for compound **3** (Sections 5.1 and 5.2). In this case coalescence is achieved at 25 °C.

Figure S26. ¹H-NMR (500 MHz, CD₃CN with benzene as standard, 25°C) titration of compound 6 with Zn(ClO₄)₂·6H₂O.

The considerably bigger shift change of H-C(8) and o-H-C(Ar) signals (0.6 and 0.4 ppm, respectively), compared to H-C(2) (0.2 ppm), leads to the same complexation pattern as previously mentioned. Compounds **3** and **6** exhibit similar complexation-induced NMR chemical shift change in the presence of Zn²⁺ ions.

Figure S27. Comparison of NMR shifts of compounds 3 (blue) and 6 (red) during titration with Zn(ClO₄)₂·6H₂O

5.4 Titration of compounds 2 and 4 with Zn(ClO₄)₂•6H₂O and Ca(ClO₄)₂•4H₂O

Although metal complexes of compounds **2** and **4** showed lower emission quantum yields, the pattern of NMR signal shifts in the presence of Zn^{2+} and Ca^{2+} remains the same, as previously mentioned for compound **3** (Figures S22-S25). The samples are prepared according to general procedure (Sections 5.1 and 5.2).

Figure S28. ¹H-NMR (500 MHz, CD₃CN with benzene as standard, 50°C) titration of compound 2 with Zn(ClO₄)₂·6H₂O.

Figure S29. ¹H-NMR (500 MHz, CD₃CN with benzene as standard, 50°C) titration of compound 2 with Ca(ClO₄)₂·4H₂O.

Figure S30. ¹H-NMR (500 MHz, CD₃CN with benzene as standard, 50°C) titration of compound **4** with Zn(ClO₄)₂·6H₂O.

Figure S31. ¹H-NMR (500 MHz, CD₃CN with benzene as standard, 50°C) titration of compound 4 with $Ca(ClO_4)_2 \cdot 4H_2O$.

References

- 1 K. Suzuki, A. Kobayashi, S. Kaneko, K. Takehira, T. Yoshihara, H. Ishida, Y. Shiina, S. Oishi and S. Tobita, *Phys. Chem. Chem. Phys.*, 2009, **11**, 9850.
- 2 M. La Rosa, S. A. Denisov, G. Jonusauskas, N. D. McClenaghan and A. Credi, *Angew. Chemie*, 2018, **130**, 3158–3161.
- 3 K. Ozols, D. Cīrule, I. Novosjolova, D. Stepanovs, E. Liepinsh, Ē. Bizdēna and M. Turks, Tetrahedron Lett., 2016, 57, 1174-1178..
- 4 Z. Janeba, P. Francom and M. J. Robins, *J. Org. Chem.*, 2003, **68**, 989–992.
- 5 S. Ben Wang, X. Q. Deng, D. C. Liu, H. J. Zhang and Z. S. Quan, *Med. Chem. Res.*, 2014, **23**, 4619–4626.