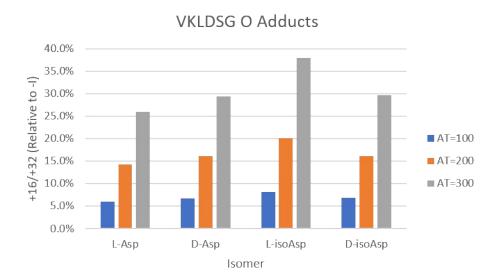

	Supporting Information
Differe	Supporting Information ntiation of Peptide Isomers by Excited-State Photodissociation and Ion Molecule Interactions
	Brielle L. Van Orman, Hoi-Ting Wu, Ryan R. Julian*
Departmer	nt of Chemistry, University of California, Riverside, California 92521, United States
=	ding Author
* correspon	ndence should be sent to: ryan.julian@ucr.edu


Department of Chemistry, University of California, Riverside, 501 Big Springs Road, Riverside,

CA 92521, USA, (951) 827-3959

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Figure S1: Full range of structures generated by simulated annealing of 4IB-VKLDHG, where Fig. 6 shows structures with potential energy within the lowest 50 kJ.

Figure S2: Ratio of +16/+32 Da oxygen adducts as a function of laser excitation time. Increased time corresponds to increased production of +16 Da. This is consistent with two-step process where O2 initially adds to the radical site, followed by loss of O after a subsequent laser pulse.