Supporting information

Solvent-dependent termination, size and stability in polyynes synthesis by laser ablation in liquids

Sonia Peggiani, Pietro Marabotti, Riccardo Alberto Lotti, Anna Facibeni, Patrick Serafini, Alberto Milani, Valeria Russo, Andrea Li Bassi and Carlo S. Casari

Department of Energy, Politecnico di Milano, Via Ponzio 34/3, 20133, Milano, Italy

Table S.1 State of art of different polyynes obtained by physical methods in terms of length and terminations.The references are listed below.

n. of carbon atoms (end-cap)	H_2O	ACN	МеОН	EtOH	1-propanolo	1-butanolo	t-butyl alcohol	hexane	n-hexane	c-hexane	n-heptane	n-hoctane	decane	toluene	benzene	decalin	TEOS
6 (H)	1	2															
6 (CH₃)																	
6 (CN)		3															
8 (H)	1, 2, 4-8	2, 3, 7, 9	7, 10- 12	10, 13- 15	10	10	10	16- 18	5, 9, 11, 12, 19	7, 9	19	19	18	12, 20, 21	21, 22	23, 24	25
8(CH₃)																	
8(CN)		3															
10(H)	1, 4, 5, 7, 8	2, 3, 7, 9	7, 10- 12, 7, 10-12,	10, 13- 15	10	10	10	16- 18	5, 9, 11, 12, 19	7, 9	19	19	18	12, 20, 21	21, 22	23, 24	25
10(CH₃)																	
10(CN)		3															
12 (H)	7	2, 7, 9	10, 11	10, 13- 15	10	10	10	16, 17	5, 9, 11, 12, 19	9	19	19		12, 20, 21	21, 22	23, 24	25
12(CH₃)																	
12(CN)		3															
14 (H)		2, 7, 9	10, 11	10, 13- 15	10	10	10	16, 17	5, 9, 11, 19	9	19	19		12, 20, 21	21, 22	23, 24	25
14(CH₃)		20															
16(H)		2, 9	10, 11	10, 13- 15	10	10	10	16, 17	5, 9, 11	9		19		12, 20, 21	21	23, 24	25
16(CH₃)																	
18(H)			11					16, 17	5, 11					20, 21		23, 24	
18(CH₃)																	
20(H)			11					16, 17	5, 11							23, 24	
22(H)								17	11							23, 24	

Table S.2 Molar concentration (mol/L) of H-polyynes of different size in different solvents. Polarity values indicated with "p" are taken from the Handbook of organic solvents properties ²⁶ and "l" for Oswald coefficient, defined as the ratio of concentrations of the gas in the liquid and gas phases.

	ACN	IPA	EtOH	MeOH	H₂O
	p=46	p=54.6	p=65.4	p=76.2	p=100
	l=0.00083 ²⁷	l=0.2463 ²⁸	I=0.2417 ²⁸	I=0.2476 ²⁸	I=0.031 ²⁹
C ₈	(1.42±0.07)x10 ⁻⁴	(1.09±0.02)x10 ⁻⁴	(1.07±0.01)x10 ⁻⁴	(7.50±0.05)x10⁻⁵	(3.13±0.02)x10 ⁻⁶
C ₁₀	(7.3±0.4)x10⁻⁵	(4.57±0.08)x10 ⁻⁵	(4.07±0.06)x10 ⁻⁵	(2.72±0.03)x10 ⁻⁵	0
C ₁₂	(2.6±0.1)x10 ⁻⁵	(1.8±0.1)x10 ⁻⁵	(9.3±0.6)x10 ⁻⁶	(1.17±0.02)x10 ⁻⁵	0
C_{14}	(7.8±0.4)x10 ⁻⁶	(1.1±0.4)x10 ⁻⁵	(8.0±0.3)x10 ⁻⁶	(4.6±0.2)x10 ⁻⁶	0
C ₁₆	(6.5±0.3)x10 ⁻⁶	(3.4±0.1)x10 ⁻⁶	(3.0±0.1)x10 ⁻⁶	(1.6±0.1)x10 ⁻⁶	0

Table S.3 Polyynes ended by $-H/-CH_3/-CN$ obtained after ablation of graphite target in acetonitrile with the corresponding times on the chromatogram and the positions of the experimental, simulated and literature UV-Vis absorption peaks. References are listed below.

n. of C atoms $t_R(min)$		Wavelength(nm)						
(end-cap)		Experimental	Simulated	Literature				
6(H)	9.919	198	200	199 ¹				
6(CN)	11.484	216 208 200	218 209 201	215.6 207.2 198.9 ³				
6(CH₃)	11.98	205 197	205	/				
8(H)	14.149	226 216 207	226 216 208	226 216 206 ²³				
8(CN)	15.323	239/244.5 231 222	244 232 222	239/244 231 222 ³				
8(CH₃)	16.058	230 220 211	231 221 212	/				
10(H)	17.89	251 238 228	249 237 227	251 239 227 ²³				
10(CN)	18.627	265 253 242	266 253 241	264.5 253.3 242.0 3				
10(CH₃)	19.623	256 242 231	254 242 231	257 243 232 ³⁰				
12(H)	21.092	273 260 247	271 257 245	275 260 247 ²³				
12(CN)	21.468	287 273 261	287 271 258	287.4 273.7 261.1 ³				
12(CH₃)	22.64	278 263 251	276 261 249	279 264 251 ²⁰				
14(H)	23.777	295 280 265	291 275 261	296 280 267 ²³				
14(CH₃)	25.120	299 283 268	295 279 264	302 285 269 ²⁰				
16(H)	26.004	315 296 281	308 290 275	316 298 281 ²³				
16(CH₃)	27.251	319 301 285	312 294 278	/				
18(H)	28.045	333 313 295	324 304 287	334 314 295 ²³				
18(CH₃)	29.691	335 316 299	327 307 290	/				
20(H)	30.795	348 326 309	337 316 298	350 328 310 ²³				
22(H)	34.288	362 339 321	350 327 308	364 341 321 ²³				

Figure S.1 a) Normalized simulated Raman spectra of hydrogen-, methyl-, cyano-capped polyynes with four triple bonds $-(C=C)_4-$. b) The collective vibrational mode of CC bond related to the same molecules. Simulated Raman spectra and relative vibrational mode have been computed by PBEO/cc-pVTZ calculations (see Section 2).

Figure S.2 HPLC chromatogram of the ablation in pure water taken at 225 nm. The dashed orange line highlights the chromatographic peak of HC_8H , while the dashed green line indicates HC_8CH_3 . The assignation of this last peak is confirmed by the UV-Vis spectra reported in the inset. The spectrum of HC_8CH_3 is multiplied by a factor of 10 because of its low absorbance.

Table S.4 Decay time constant and corresponding R^2 of the fit of polyynes changing length, termination and solvent.

Length	τ(days)	R ²		
C ₈	-382.381 ± 31.578	0.93575		
C ₁₀	-198.860 ± 24.259	0.86876		
C ₁₂	-70.187 ± 5.949	0.93252		
C ₁₄	-29.223 ± 2.206	0.94579		
C ₁₆	-15.708 ± 0.837	0.97235		
C ₁₈	-11.002 ± 0.600	0.97104		
C ₂₀	-7.553± 0.464	0.96353		
Termination	τ(days)	R ²		
-H	-382.381 ± 31.578	0.93575		
-CN	-6.105 ± 0.413	0.95606		
Solvent	τ(days)	R ²		
H ₂ O	-1.8191 ± 0.018	0.99929		
ACN	-382.381 ± 31.578	0.93575		
IPA	-155.438 ± 10.500	0.95617		
EtOH	-223.464 ± 17.020	0.94487		

References of Table S.1 and S.3

- 1. S Peggiani, A Senis, A Facibeni, A Milani, P Serafini, G Cerrato et al., *Chemical Physics Letters*, 2020, **740**, 137054-137061.
- 2. G Compagnini, V Mita, RS Cataliotti, L D'Urso, O Puglisi, *Carbon*, 2007, **45**, 2445-2458.
- 3. T Wakabayashi, M Saikawa, Y Wada, T Minematsu, *Carbon*, 2012, **50**, 47-56.
- 4. G Grasso, L D'Urso, E Messina, F Cataldo, O Puglisi, G Spoto et al., *Carbon*, 2009, **47**, 2611-2619.
- 5. Natalia R. Arutyunyan, Pavel V. Fedotov, Vitaly V. Kononenko, *Journal of Nanophotonics*, 2016, **10**, 012519-012518.
- 6. SK Shin, JK Song, SM Park, App. Surf. Sci., 2011, 257, 5156-5158.
- 7. G Forte, L D'Urso, E Fazio, S Patanè, F Neri, O Puglisi, G Compagnini, *Applied Surface Science*, 2013, **272**, 76-81.
- 8. Yeong Kyung Choi, Jae Kyu Song, and Seung Min Park, *Bull. Korean Chem. Soc.*, 2009, **30**, 3073-3074.
- 9. Seung Keun Shin, and Seung Min Park, Bull. Korean Chem. Soc., 2012, 33, 597-601.
- 10. R Matsutani, T Kakimoto, H Tanaka, K Kojima, *Carbon*, 2011, **49**, 77-81.
- 11. R Matsutani, K Inoue, N Wada and K Kojima, *Chem. Commun.*, 2011, **47**, 5840–5842.
- 12. M Tsuji, S Kuboyama, T Matsuzaki, T Tsuji, *Carbon*, 2003, **41**, 2141-2148.
- 13. Hiroshi Tabata, Minoru Fujii, Shinji Hayashi Chemical Physics Letters, 2004, 395, 138-142.
- 14. H Tabata, M Fujii, S Hayashi, T Doi, T Wakabayashi, Carbon, 2006, 44, 3168-3176.
- 15. H. Tabata, M. Fujii, and S. Hayashi, *The European Physical Journal D*, 2005, 34, 223–225.
- 16. R Matsutani, T Kakimoto, K Wada, T Sanada, H Tanaka, K Kojima et al., *Carbon*, 2008, **46**, 1091-1109.
- 17. R Matsutani, F Ozaki, R Yamamoto, T Sanada, Y Okada, K Kojima, *Carbon*, 2009, 47, 1659–1663.
- 18. Y. Sato, T. Kodama, H. Shiromaru, J.H. Sanderson, T. Fujino, Y. Wada et al., *Carbon*, 2010, **48**, 1670-1692.
- 19. Young Eun Park, Seung Keun Shin and Seung Min Park, Bull. Korean Chem. Soc., 2012, 33.

- 20. Ali Ramadhan, Michal Wesolowski, Tomonari Wakabayashi, Haruo Shiromaru, Tatsuya Fujino, Takeshi Kodama, et al., *Carbon*, 2017, **118**, 680-685.
- 21. Masaharu Tsuji, Takeshi Tsuji, Shingo Kuboyama, Seong-Ho Yoon, Yozo Korai, Teppei Tsujimoto et al., *Chemical Physics Letters* 2002, **355** 101-108.
- 22. M.J. Wesolowski, S. Kuzmin, B. Moores, B. Wales, R. Karimi, A.A. Zaidi et al., *Carbon*, 2011, **49**, 625-630.
- 23. R Matsutani, K Inoue, T Sanada, N Wada, K Kojima, *Journal of Photochemistry and Photobiology A: Chemistry* 2012, **240** 1–4.
- 24. K Inoue, R Matsutani, T Sanada, K Kojima, *Carbon*, 2010, **48**, 4197-4214.
- 25. C.H. Wu, S.Y. Chen, P. Shen, *Carbon*, 2014, **67**, 27-37.
- 26. I. M. Smallwood, Handbook of organic solvent properties, 1996.
- 27. Gh. Reza Rezaei Bebahani, Pat Hogan, and W. Earle Waghorne, *J. Chem. Eng. Data* 2002, **47**, 1290-1292.
- 28. C. B. Kretschmer, Janina Nowakowsici, Asd Richard Wiebe, *Industryal and Engineering Chemistry* 1946, **38**, 506-509.
- 29. S.A. Shchukarev, and T.A. Tolmacheva, *Zhurnal Strukturnoi Khimii*, 1968, **9**, 21-28.
- 30. Y. Wada, K. Koma, Y. Ohnishi, Y. Sasaki, and T. Wakabayashi, Eur. Phys. J. D, 2012, 66.