Supporting Information

Physico-chemical investigation of highly concentrated potassium acetate solutions towards applications in electrochemistry

Pierre Stigliano^a, Nicolò Pianta^a, Simone Bonizzoni^a, Michele Mauri^a, Roberto Simonutti^a, Roberto Lorenzi^a, Barbara Vigani^c, Vittorio Berbenni^b, Silvia Rossi^c, Piercarlo Mustarelli^a, Riccardo Ruffo^{*a}

^a Department of Materials Science, University of Milano Bicocca, via Cozzi 55, 20125 Milano, Italy

^b Department of Chemistry, University of Pavia, Viale Taramelli 16, 27100 Pavia, Italy

^c Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy

Figure S1 Flow curve of the sample KAC-1 at different temperature values (mean values ± s.d., n=3)

Figure S2 Flow curve of the sample KAC-5 at different temperature values (mean values ± s.d., n=3)

Figure S3 Flow curve of the sample KAC-10 at different temperature values (mean values ± s.d., n=3)

Figure S4 Flow curve of the sample KAC-15 at different temperature values (mean values ± s.d., n=3)

Figure S5 Flow curve of the sample KAC-20 at different temperature values (mean values ± s.d., n=3)

Figure S6 Flow curve of the sample KAC-25 at different temperature values (mean values ± s.d., n=3)

Figure S7 Molar conductivity vs. the square root of the molarity of the KAC solutions. The full line is a linear best-fit ($R^2 > 0.99$). The molar conductivity at infinite dilution at 25°C is $\Lambda_0 = 90.6$ ohm⁻¹ cm² mol⁻¹.

Μ	рН	Anodic water decomposition	Cathodic water decomposition
mol kg-1		V vs. SHE	V vs. SHE
1	6.88	-0.39	0.84
5	7.72	-0.44	0.79
10	8.57	-0.49	0.74
15	9.20	-0.52	0.71
20	9.57	-0.54	0.68
25	9.82	-0.56	0.67

Table S1: Experimental pH values of the solution and thermodynamic stability limits of water decomposition at 25°C. Decomposition values have been calculated using the corresponding Nernst equations.

Figure S8. Cathodic and anodic LSV for the determination of the solutions decomposition limits.

v _{max} cm⁻¹	Relative Intensity	Assignment
470	2.7	ρCO ₂
622	4.9	ωCO ₂
651	14	δCO2
924	84	vCC
1018	1.9	ρCH ₃
1345	18	δCH_3
1412	43	v _s CO ₂
1576	6.3	$v_{as}CO_2$
1667	3.6	δH_2O
2672*	2.1	n.a.
2747*	1.5	n.a.
2849*	8.4	n.a.
2932	100	$v_s CH_3$
2979	29	$v_{as}CH_3$
3240 (b)	15	v_sH_2O
3420 (b)	20	$v_{as}H_2O$

Table S2: Experimental Raman frequencies of sample KAC-25, relative intensities are normalized with respect to the most intense peak at 2932 cm-1. Peaks assignment is taken from references (1) and (2). The abbreviations represent the following: b, broad; ρ , rocking; ω , wagging; δ , bending; v, stretching; s, symmetric; as, asymmetric. Peaks marked with an asterisk miss of unambiguous and definite assignments. They have been already observed in previous works¹ and are likely due to overtones and/or combination of vibrational modes.

Parameters	Exponential fit: $a + b exp(-kC)$	Logistic model fit: $a + L/[1 + exp(-k(C - C_0))]$
<i>a</i> (cm⁻¹)	1415.5	31.9
<i>b</i> (cm⁻¹)	0.226	n.a.
<i>k</i> (Kg/mol)	8.58·10 ⁻²	0.251
<i>L</i> (cm⁻¹)	n.a.	4.43
<i>C</i> ₀ (mol/kg)	n.a.	13.0

Table S3: Fitting results of the exponential and logistic functions used to fit respectively peak maximum position and FWHM of the v_sCO_2 Raman peak as a function of KAC molality. For the sake of simplicity we used the same parameter labels, *a* and *k*, in the two fitting models. Importantly, these values are not connected each other, i.e. the two starting values and the two growth rates are independents.

References

- 1. W. Rudolph W, Irmer G. Raman spectroscopic studies and DFT calculations on NaCH 3 CO 2 and NaCD 3 CO 2 solutions in water and heavy water. RSC Advances. 2015;5(28):21897–908.
- 2. Carey DM, Korenowski GM. Measurement of the Raman spectrum of liquid water. J Chem Phys. 1998 Feb 15;108(7):2669–75.