Electronic Supplementary Material (ESI)

Half-filled intermediate bands in doped inorganic perovskites for solar

cells

Xinbo Ma and Zhenyu Li*

Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China (Email: zyli@ustc.edu.cn)

Fig. S1 Spin polarized band structures of Ti doped (a)(b)(c), Cr doped (d)(e)(f), and Fe doped (g)(h)(i) CsPbX₃ (X = Cl, Br, I) calculated with PBE and a $2 \times 2 \times 2$ supercell. Red solid lines and blue dotted lines in the band structures represent spin-up and spin-down bands. The Fermi level is set to 0.

(e)

(f)

Fig. S2 Band structures of Cr doped (a)(b)(c) CsPbCl₃, (d)(e)(f) CsPbBr₃ and (g)(h)(i) CsPbI₃ calculated with PBE+U (U = 2, 3.8 and 6 eV, the value of 3.8 eV is adopted from the reference 1) using a $2\times2\times2$ supercell. Red solid lines and blue dotted lines in the band structures represent spin-up and spin-down bands. The Fermi level is set to 0.

Fig. S3 Band structures of Cr doped CsPbCl₃ calculated with (a) U = 2 eV, (b) U = 3.8 eV and (b) U = 6 eV modeled with a $2 \times 2 \times 3$ supercell. Red solid lines and blue dotted lines in the band structures represent spin-up and spin-down bands. The Fermi level is set to 0.

(a) (b) (c)

(f)

Fig. S4 Band structures of In doped (a)(b)(c), Ga doped (d)(e)(f), and TI doped (g)(h)(i) $CsPbX_3$ (X = Cl, Br, I) calculated with PBE and a 2×2×2 supercell. The Fermi level is set to 0.

CoNiCuFig. S5 Spin polarized projected band structures of M (M is transition metal in the fourth period)doped CsPbCl₃ calculated with PBE and a $2 \times 2 \times 2$ supercell. The blue bands represent spin-up dorbitals of M and the green bands represent spin-down d orbitals of M. e_g states are dispersiveand t_{2g} states are flat. The Fermi level is set to 0.

(b)

Fig. S6 Band structures of Mo doped (a)(b)(c) CsPbCl₃, (d)(e)(f) CsPbBr₃, (g)(h)(i) CsPbI₃ calculated with PBE+U (U = 2, 3.8, 6 eV) using a $2 \times 2 \times 2$ supercell. Red solid lines and blue dotted lines in the band structures represent spin-up and spin-down bands. The Fermi level is set to 0.

(a)

Fig. S7 Band structures of W doped (a)(b)(c) CsPbCl₃, (d)(e)(f) CsPbBr₃, (g)(h)(i) CsPbI₃ calculated with PBE+U (U = 2, 3.8, 6 eV) using a $2 \times 2 \times 2$ supercell. Red solid lines and blue dotted lines in the band structures represent spin-up and spin-down bands. The Fermi level is set to 0.

Fig. S8 Band structures and PDOS of Cr doped (a)(b) CsPbCl₃, (c)(d) CsPbBr₃ and (e)(f) CsPbI₃ calculated with PBE+U (U = 3.8 eV) and a $3 \times 3 \times 3$ supercell. Red solid lines and blue dotted lines in the band structures represent spin-up and spin-down bands. The Fermi level is set to 0.

Fig. S9 PDOS of (a) In and (b) Ga doped CsPbCl₃ calculated with PBE using a $2\times2\times2$ supercell. The Fermi level is set to 0.

(e) (f) Fig. S10 Band structures and PDOS of In doped (a)(b) $CsPbCl_3$, (c)(d) $CsPbBr_3$ and (e)(f) $CsPbI_3$ calculated with PBE using a 3×3×3 supercell. The Fermi level is set to 0.

Fig. S11 Band structures and PDOS of (a)(b) Ga and (c)(d) In doped CsPbCl₃ calculated with HSE+SOC using a $2 \times 2 \times 2$ supercell. The Fermi level is set to 0.

Fig. S12 Band structures of (a) Ga and (b) In doped CsPbCl₃ calculated with HSE+SOC using a 2×2×3 supercell. The Fermi level is set to 0.

Fig. S13 Band structures of (a) Ga and (b) In doped CsPbCl₃ calculated with PBE using a $2\times3\times4$ supercell. The Fermi level is set to 0.

Fig. S14 Band structures of (a)(b)(c) In and (d)(e)(f) Ga doped CsPbCl₃ calculated with PBE using a $2 \times 2 \times 2$ supercell at the charge state of q = +1, 0, -1. The Fermi level is set to 0.

Fig. S15 Fluctuation of total potential energy and the snapshot at 10 ps for (a)(c) In and (b)(d) Ga doped $CsPbCl_3$ during the AIMD simulations at 300 K.

References

1 A.Hermann, B.Vest, P.Schwerdtfeger, Phys. Rev. B 2006, 74, 224402.