Supporting Information

2D van der Waals heterostructures of graphitic BCN as direct Z-scheme

photocatalysts for overall water splitting: the role of polar π -conjugated

moieties

Zhijie Wang, Zhibo Luo, Jia Li, Kang Yang, Gang Zhou*

School of Science, Hubei University of Technology, Wuhan 430068, People's Republic of China

*E-mail: 995372896@qq.com

Figure S1 Partial density of states (PDOS) of (a) BC_3 , (b) C_3N and (c) BC_6N monolayers.

Figure S2 Band decomposed charge density of (a) BC₃, (b) C_3N and (c) BC₆N monolayers, and the isosurface value is 0.008 e Å⁻³.

Figure S3 Top view of five stacking configurations for BC_3 on C_3N in our investigation. (a) AA, (b) AB, (c) AC, (d) AD and (e) AE. Green, brown and grey balls denote B, C and N atoms, respectively.

Figure S4 Top view of eight stacking configurations for BC_3 on BC_6N in our investigation. (a) AA, (b) AB, (c) AC, (d) AD, (e) AE, (f) AF, (g) AG and (h) AH. Green, brown and grey balls denote B, C and N atoms, respectively.

Figure S5 Electronic band structures of monolayer (a) BC_3 under the compressive strain of -3.5%, (b) C_3N under the tensile strain of 3.5%, and (c) BC_6N under the tensile strain of 2%.

Figure S6 Electrostatic potentials of (a) BC_3 , (b) C_3N and (c) BC_6N monolayers. The vacuum level is set to zero.

		6
Stacking Pattern	d (Å)	E_b (meV/atom)
AA	3.266	-29.36
AB	3.096	-36.99
AC	3.046	-39.33
AD	3.194	-32.55
AE	3.108	-36.14

Table S1 Calculated interlayer spacing (*d*) and binding energy (E_b) of five stacking configurations for BC₃/C₃N heterostructures in our investigation.

<u> </u>		
Stacking Pattern	<i>d</i> (Å)	E_b (meV/atom)
AA	3.323	-24.09
AB	3.171	-28.34
AC	3.176	-27.91
AD	3.182	-27.37
AE	3.239	-27.13
AF	3.204	-27.33
AG	3.166	-28.99
AH	3.178	-28.68

Table S2 Calculated interlayer spacing (*d*) and binding energy (E_b) of eight stacking configurations for BC₃/BC₆N heterostructures in our investigation.

The adsorption energies of hydrogen and oxygen intermediates in the HER and OER on BC_3/C_3N and BC_3/BC_6N heterostructures are calculated using the following equations:

$\Delta E_{\rm H^*} = E_{\rm monolayer+H} - E_{\rm monolayer} - 1/2 \ E({\rm H_2}))$	(1)
$\Delta E_{\rm O*} = E_{\rm monolayer+O} - E_{\rm monolayer} - (E({\rm H_2O}) - E({\rm H_2}))$	(2)
$\Delta E_{\rm OH*} = E_{\rm monolayer+OH} - E_{\rm monolayer} - (E(\rm H_2O) - 1/2 \ E(\rm H_2))$	(3)
$\Delta E_{\text{OOH}*} = E_{\text{monolayer+OOH}} - E_{\text{monolayer}} - (2E(\text{H}_2\text{O}) - 3/2 \ E(\text{H}_2))$	(4)

where $E_{\text{monolayer+H}}$, $E_{\text{monolayer+O}}$, $E_{\text{monolayer+OH}}$ and $E_{\text{monolayer+OOH}}$ are the total energies of BCN monolayers with the adsorption of H, O, OH and OOH on the active site (*), respectively. $E(\text{H}_2\text{O})$ and $E(\text{H}_2)$ are the total energies of H₂O and H₂ molecules in free gas phases.

	<u> </u>	()
	Site	$\Delta E (eV)$
C ₃ N in BC ₃ /C ₃ N	Ν	2.14
	С	0.53
BC ₆ N in BC ₃ /BC ₆ N	Ν	1.73
	C1(-B)	1.02
	C2(-N)	0.98
	В	1.36

Table S3 Adsorption sites and energies ΔE of H* in the HER on BC₃/C₃N and BC₃/BC₆N heterostructures, according to Equation (1).

	,	0 1	
	Intermediates	Site	$\Delta E (eV)$
BC ₃ in BC ₃ /C ₃ N	O*	B-C Bridge	0.21
	OH*	В	0.19
	OOH*	В	0.57
BC ₃ in BC ₃ /BC ₆ N	O*	B-C Bridge	0.75
	OH*	В	0.71
		С	1.64
	OOH*	В	0.87

Table S4 Adsorption sites and energies ΔE of O*, OH* and OOH* in the OER on BC₃/C₃N and BC₃/BC₆N heterostructures, according to Equations (2), (3) and (4).

Materials	<i>m*/m</i> ₀		C_{2D} (N	$E_d (\mathrm{eV})$		$\mu (\mathrm{cm}^{2}\mathrm{V}^{-1}\mathrm{s}^{-1})$	
(direction)	е	h	m ⁻¹)	е	h	е	h
$BC_{3}(x)$	0.169	0.764	267.099	3.763	5.514	7083.18	786.17
$BC_{3}(y)$	0.457	0.699	266.982	3.742	5.228	1518.07	465.21
$C_3N(x)$	0.618	0.148	371.635	5.078	8.321	1426.95	2452.46
$C_3N(y)$	0.683	0.353	371.570	4.807	4.814	1197.74	2090.79
$BC_6N(x)$	0.212	0.195	318.425	4.264	3.521	8735.55	13928.16
$BC_6N(y)$	0.184	0.177	318.361	4.721	3.400	9248.62	18536.67
$BC_3/C_3N(x)$	0.170	0.170	610.996	4.732	5.564	20299.69	14682.66
$BC_3/C_3N(y)$	0.452	0.400	610.906	3.890	5.341	4516.23	2707.13
$BC_3/BC_6N(x)$	0.167	0.225	568.357	3.835	6.042	25733.34	7674.79
$BC_3/BC_6N(y)$	0.472	0.190	573.550	3.764	5.493	6157.73	7182.72

Table S5 Effective masses m^* , elastic modulus C_{2D} , deformation potentials E_d and mobilities μ for electrons (*e*) and holes (*h*) along the *x* and *y* directions of monolayer BC₃, C₃N, and BC₆N and bilayer BC₃/C₃N and BC₃/BC₆N heterostructures.

to the values in heterostructures (in units of em v s).						
Monolayer	Strain	е		h		
		<i>x</i>	У	x	У	
BC_3	0	7083.18	1518.07	786.17	465.21	
	-3.5%	8170.40	1832.74	810.55	600.87	
C_3N	0	1426.95	1197.74	2452.46	2090.79	
	3.5%	1181.86	1089.67	2058.58	1810.84	
BC_6N	0	8735.55	9248.62	13928.16	18536.67	
	2%	7912.19	8398.43	12444.62	16801.67	

Table S6 Mobilities for electrons (*e*) and holes (*h*) along the *x* and *y* directions of monolayer BC₃, C₃N, and BC₆N, under the compressive or tensile strains, comparable to the values in heterostructures (in units of $\text{cm}^2\text{V}^{-1}\text{s}^{-1}$).

Table S7 Mobilities for electrons (*e*) and holes (*h*) along the *x* and *y* directions of component electrodes of BC_3/C_3N and BC_3/BC_6N heterostructures, participating in the HER and OER (in units of cm²V⁻¹s⁻¹).

Heterostructure	Component	е		h		
	electrode	x	У	x	У	
BC ₃ /C ₃ N	BC ₃	-	-	769.99	695.43	
	C_3N	657.11	718.07	-	-	
BC ₃ /BC ₆ N	BC_3	-	-	1179.53	1528.11	
	BC ₆ N	7839.32	11176.18	-	-	