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A. Theory

In the helicity representation, the scattering amplitude for a transition from an initial state

| jm|Ω|ε〉 to a final state | j′m′|Ω′|ε ′〉 can be written as:

f j′m′Ω′ε ′, jmΩε(θ)≡ Fm′ε ′mε =
1

2ikin
∑
J
(2J+1)dJ

m′m(θ)SJ
j′m′Ω′ε ′, jmΩε

, (1)

where θ is the scattering angle (the angle between the initial and final relative velocities, k and

k′) and j, m, |Ω|, and ε are the quantum numbers that represent, respectively, the total rotational

angular momentum quantum number apart from nuclear spin, its projection onto k, the absolute

value of the spin-orbit quantum number, and the symmetry index (e/ f ). The primes indicate

the respective product labels. kin is the initial relative wave vector, dJ
m′m(θ) is the element of

the reduced rotation matrix, and SJ
j′m′Ω′ε ′, jmΩε

is the scattering matrix element for the indicated

transition.

We can define a J dependent scattering amplitude,

FJ
m′ε ′mε

=
1

2ikin
(2J+1)dJ

m′m(θ)S
J
j′m′Ω′ε ′, jmΩε

, (2)

and express the scattering amplitude Fm′ε ′mε (for fixed values of j, j′, |Ω|, and |Ω′|) as

Fm′ε ′mε = ∑
J

FJ
m′ε ′mε

. (3)

We can also define the sum of the scattering amplitude products over m′ as

Qm1ε1 m2ε2 ≡∑
m′

Fm′ε ′m1ε1 F∗m′ε ′m2ε2
=∑

J1

∑
J2

QJ1 J2
m1ε1 m2ε2 , (4)

where

QJ1 J2
m1ε1 m2ε2 = ∑

m′
FJ1

m′ε ′m1ε1

[
FJ2

m′ε ′m2ε2

]∗
. (5)

Summing over m′ and averaging over initial m, we obtain the differential cross section (DCS) for

a jΩε → j′Ω′ε ′ transition:

dσ( jΩε → j′Ω′ε ′) =
1

(2 j+1)∑
m

∑
m′
|Fm′ε ′mε |2 =

1
(2 j+1)∑

m
Qmε mε (6)
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For j = 1
2 ,

dσ(
1
2

Ωε → j′Ω′ε ′) =
1
2

1/2

∑
m=−1/2

Qmε mε = Q1/2ε 1/2ε , (7)

since Qmε1 mε2 = ε1ε2Q−mε1−mε2 .

As introduced in the main text, in the presence of an orienting electric field, a pure f Λ-doublet

state becomes a superposition of the two Λ-doublet states:

| jmE |Ω|E〉=
1√
2
[α (E) | jmE |Ω|e〉+β (E) | jmE |Ω| f 〉] , (8)

where mE is the projection of j onto the electric field vector E, and the coefficients α(E) and

β (E) are the field-dependent mixing parameters, such that α2 +β 2 = 2. In the infinite field limit,

that is, when WStark� EΛ (where WStark is the linear Stark effect for a pure f Λ-doublet and EΛ is

the Λ-doublet splitting), |α|= |β |= 1.

The rotational state with its projection along E can be written in terms of those states whose

quantization axis is taken along k:

| jmEΩε〉= ∑
m

D j
mmE

(φE ,θE ,0)| jmΩε〉 , (9)

where D j
mmE (φE ,θE ,0) is the rotation matrix element, with the angles θE and φE relating the LAB

frame (Z||E) to the scattering frame (z||k). Accordingly, the polar, θE , and azimuthal, φE , angles

define the direction of the electric field in the k-k′ scattering frame.

As demonstrated in ref. 1 and 2, the orientation dependent DCS for j = 1
2 in the presence of a

static electric field can be written as:[
dσ(

1
2
|mE |ΩÊ→ j′Ω′ε ′)

]φE

θE
=

1
2

{
α

2Q1/2e 1/2e−|αβ |
[

cosθE
(
Q1/2 f 1/2e +Q1/2e1/2 f

)
+

sinθE cosφE(Q−1/2 f 1/2e +Q1/2e−1/2 f )
]
+β

2Q1/2 f 1/2 f

}
, (10)

and the r-polarization dependent differential cross sections (r-PDDCSs), R(k)
q (θ),3 can be written

in terms of the Qm1 ε1 m2,ε2 products,

σiso

2π
R(0)

0 (θ) =
1
2
(α2Q1/2e1/2e +β

2Q1/2 f 1/2 f ) (11)

σiso

2π
R(1)

0 (θ) =
1
2
(Q1/2 f 1/2e +Q1/2e1/2 f ) (12)

σiso

2π
R(1)

1 (θ) =− 1
2
√

2
(Q−1/2 f 1/2e +Q1/2e−1/2 f ) , (13)
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where σiso is the isotropic integral cross section (ICS) in the presence of the orienting field. Sub-

stituting eqn (11)-(13) into eqn (10), the orientation dependent DCS can then be written in terms

of the r-PDDCSs:1,2

[dσ(θ)]
φE
θE

=
σiso

2π

[
R(0)

0 (θ)−|αβ |
(

cosθE R(1)
0 (θ)−

√
2 sinθE cosφE R(1)

1 (θ)
)]

, (14)

where we have used [dσ(θ)]
φE
θE
≡
[
dσ(1

2 |mE |ΩÊ→ j′Ω′ε ′)
]φE

θE
to simplify the notation.

As discussed in the main text, the R(1)
0 (θ) and R(1)

1 (θ) moments quantify orientation along the

z- and x-axes, respectively, while R(0)
0 (θ) represents the isotropic moment. When θE = 90◦ and

φE = 90◦, that is, when E is along the ±y axis, perpendicular to the k-k′ plane, R(0)
0 (θ) is the

only surviving moment. It should be noted that, as long as |αβ | 6= 0, (σiso/2π)R(0)
0 (θ) does not

coincide with the DCS obtained in the absence of an orienting field. Only when α = 0, and hence

β = 2, or α = 2 and β = 0, the respective DCSs are those of the initial ε = f and ε = e pure states.

Making use of eqn (4), eqn (10) can be rewritten as[
dσ(θ)

]φE

θE
=

1
2 ∑

J1,J2

{
α

2QJ1J2
1/2e 1/2e−|αβ |

[
cosθE(Q

J1J2
1/2 f 1/2e +QJ1J2

1/2e1/2 f )+

sinθE cosφE(Q
J1J2
−1/2 f 1/2e +QJ1J2

1/2e−1/2 f )
]
+β

2QJ1J2
1/2 f 1/2 f

}
, (15)

which for convenience can be recast as,4[
dσ(θ)

]φE

θE
=

1
2 ∑

J
∑

J1,J2

δJ,J1 +δJ,J2

2

{
α

2QJ1J2
1/2e 1/2e +β

2QJ1J2
1/2 f 1/2 f −

|αβ |
[

cosθE(Q
J1J2
1/2 f 1/2e +QJ1J2

1/2e1/2 f )+

sinθE cosφE(Q
J1J2
−1/2 f 1/2e +QJ1J2

1/2e−1/2 f )
]}

. (16)

In a previous work,4,5 it was shown that it is possible to define a quantum generalized deflec-

tion function (QM GDF), a quantum analog to the classical joint probability distribution of the

scattering angle and the total angular momentum. For a specific | j = 1
2 , |Ω|=

1
2 ,ε〉 → | j

′|Ω′|ε ′〉

transition, the QM GDF, Q(θ ,J;ε), can be written as:

Q(θ ,J;ε) =
sinθ

2 j+1 ∑
J1

∑
J2

∑
m

δJ1,J +δJ2,J

2
×QJ1 J2

mε,mε , (17)

where the final state quantum numbers have been omitted for simplicity.
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The QM GDF can be considered as a joint quasi-probability distribution that allows quantum

dynamicists to investigate the simultaneous dependence of a scattering process on the total angular

momentum J and the scattering angle θ . Quantum mechanical results can thus be used to shed

light on the reaction or scattering mechanism. In many cases, there is good agreement between

the quantum and classical correlation functions, as long as quantum effects are not dominant.

As shown in detail in refs. 4 and 5, it is possible to calculate a polarization dependent quantum

deflection function. For j = 1
2 , the orientation dependent QM GDF can be written as:

[
Q(θ ,J)

]φE
θE

=
sinθ

2 ∑
J1

∑
J2

δJ1,J +δJ2,J

2

{
α

2QJ1J2
1/2e 1/2e +β

2QJ1J2
1/2 f 1/2 f −

|αβ |
[

cosθE (Q
J1J2
1/2 f 1/2e +QJ1J2

1/2e1/2 f )+ sinθE cosφE (Q
J1J2
−1/2 f 1/2e +QJ1J2

1/2e−1/2 f )
]}

.

(18)

The resulting interference pattern may be very sensitive to small changes in the polarized distribu-

tion of the reactants, and the interference effects on the corresponding differential cross sections

are generally more pronounced than for an isotropic distribution of reactants. As discussed in

ref. 4, the QM GDF,
[
Q(θ ,J)

]φE
θE

, are additive over J, although they can take on negative values.

Finally, by integrating eqn (18) over θ , we can extract the J-partial cross section,

[
σ̃(J)

]φE

θE
=
∫

π

0

[
Q(θ ,J)

]φE
θE

dθ =
1

2k2
in
(2J+1)

[
P̃(J)

]φE

θE
. (19)

It must be stressed that, in general, the orientation dependent partial cross section,
[

σ̃(J)
]φE

θE
(or

the collision probability,
[
P̃(J)

]φE

θE
), does not have azimuthal symmetry and integration is only

carried out over θ . Only in those cases in which m1 = m2, that is, if only R(k)
q (θ) moments

with q = 0 intervene, is the azimuthal symmetry preserved and
[

σ̃(J)
]φE

θE
is a truly orientation

dependent partial cross section. The expressions for the r-polarization dependent QM GDFs are

entirely analogous to those of the r-PDDCSs. In particular, for j = 1
2 , the respective expressions
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are equivalent to those in eqn (11)-(13):

σiso

2π
Q(0)

0 (θ ,J) =
1
2 ∑

J1

∑
J2

δJ1,J +δJ2,J

2
(α2QJ1J2

1/2e1/2e +β
2QJ1J2

1/2 f 1/2 f ) (20)

σiso

2π
Q(1)

0 (θ ,J) =
1
2 ∑

J1

∑
J2

δJ1,J +δJ2,J

2
(QJ1J2

1/2 f 1/2e +QJ1J2
1/2e1/2 f ) (21)

σiso

2π
Q(1)

1 (θ ,J) =− 1
2
√

2 ∑
J1

∑
J2

δJ1,J +δJ2,J

2
(QJ1J2
−1/2 f 1/2e +QJ1J2

1/2e−1/2 f ) . (22)

B. Integral steric asymmetries (ISA) for ∆Ω = 0 and ∆Ω = 1

Supplementary Fig. S1 compares the QM integral steric asymmetries for the spin-orbit con-

serving (dark cyan) and spin-orbit changing (red) manifold in the side-on (top) and the end-on

(bottom) configurations. The data were calculated at the experimental field strength, and the spin-

orbit changing ISAs are the same as the ones shown in Fig. 3 of the main text. A positive value

corresponds to a preference for N-side (+x) and N-end (−z) collisions in the side-on and end-on

orientations, respectively. While the oscillations of the ISAs in the spin-orbit conserving mani-

fold are roughly centered around zero, the ISAs for the spin-orbit changing manifold are shifted

towards positive values.

A different view of the overall preference for N-side/N-end collisions is given in Fig. S2. In this

figure, the DCSs for the two side-on and the two end-on orientations have been summed over all

even (top) and all odd (bottom) energetically accessible states in the spin-orbit changing manifold.

For the odd ∆ j transitions, the summed DCSs for the +x (red) ad the −z (green) orientations are

clearly larger than the ones for the opposite orientations. Although, in the side-on orientation, the

−x (blue) configuration becomes more important at larger scattering angles, the +x orientation

is dominant up to θ ∼ 70◦. The differences between the summed DCSs for even ∆ j transitions

are less stark; however, it is again the +x and the −z orientations that dominate. This confirms

our conclusion that collisions towards the N-side/N-end of the NO molecule are overall preferred

owing to the increased electron density closer to the N-end.
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Fig. S 1. Comparison of the QM integral steric asymmetries for the spin-orbit conserving (∆Ω = 0, dark
cyan) and changing (∆Ω = 1, red) manifolds in the side-on (top) and the end-on (bottom) geometries. Both
sets of data are for the e final states at the experimental field strength and have been averaged over the
experimental collision energy distribution.

C. J-partial cross sections and opacity functions

The J-partial cross sections, calculated according to eqn (19), are presented in Fig. S3 for the

same states and orientations as in Fig. 4 of the main text. These partial cross sections represent

the contribution of each J to the differential cross section of a specific final rotational state. The
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Fig. S2. Sums of the infinite field DCSs for even (top) and odd (bottom) ∆ j transitions into the spin-orbit
changing manifold. The DCSs have been summed over the energetically accessible even/odd ∆ j states. The
+x, −x, +z, and −z-orientations are represented in red, blue, purple, and green, respectively.

isotropic distribution in the presence of the electric field is included in black. For initial j = 1
2 , J

is approximately equal to the orbital angular momentum, and hence proportional to the classical

impact parameter.

The odd ∆ j transitions, shown in the bottom two rows of Fig. S3, exhibit a clear preference

for +x (red) and −z (green), respectively. In contrast, the J-partial cross sections for even ∆ j

transitions, plotted in the top two rows, are more similar for the two side-on and the two end-on

orientations. The J-partial cross sections for ∆ j = 6,8,10 show a maximum in the +z orientation
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(purple) at high impact parameters, which, as seen more clearly in Fig. 5 of the main text, is

correlated with the strong forward scattered peak.
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Fig. S 3. Comparison of the ±x and ±z J-partial cross sections for ∆ j = 4− 13 (∆Ω = 1), calculated at
infinite field strength. The partial cross sections, as a function of total angular momentum, J, for the side-on
configuration (red: +x, blue: −x) and for the end-on configuration (purple: +z, green: −z) are shown in the
first/third and second/fourth row, respectively. The isotropic distribution in the field is indicated in black.

The correlation between impact parameter and scattering angle is further examined in Fig. S4

for the j′ = 7.5e and j′ = 8.5e final states. The trends are similar for the other j′ transitions. The

DCSs, shown in columns 1 and 3 of the figure, are multiplied by sinθ to be compared with the

J-partial cross sections (calculated according to eqn (19)), shown in columns 2 and 4. Transitions

within the spin-orbit conserving manifold are indicated in red, and transitions within the spin-orbit

changing manifold in blue. As can be seen, the DCSs are almost mirror images of the J-partial

cross sections, reflecting the strong correlation between J and θ that is also observed in Fig. 5 in

the main text.
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Fig. S 4. Comparison between the calculated DCSs (weighted by sinθ ) and the corresponding J-partial
cross sections for j′ = 7.5e (left panels) and j′ = 8.5e (right panels). The −x, +x, −z, and +z orientations
are shown top to bottom, with the spin-orbit conserving transitions (∆Ω = 0) represented in red, and the
spin-orbit changing transitions (∆Ω = 1) in blue.

D. Modified potential calculations

The differential cross sections on the modified potentials have been calculated analogously to

the DCSs on the full potentials. To remove the attractive parts of the PES, the A′, A′′, and full

potentials were multiplied with a scaling factor, defined by a parameterized log sigmoid function

of the form6

f (R,R0,Rshift,η) = 1− 1
1+ exp(−η(R−R0 +Rshift))

. (23)

Here, R is the distance between the center of mass of the NO molecule and the Ar atom, R0

corresponds to the PES contour at zero collision energy, and Rshift shifts the inflection point to

smaller R. The value of η determines the steepness of the function and was chosen such that the

contour at the collision energy in the modified potential remained the same as in the unmodified

potential. The specific values used to scale the potentials were η = 10 bohr−1 and Rshift = 0.4 bohr.

The DCSs calculated on the modified PESs are shown in Fig. S5 for the O-end orientation (in

which the forward feature is observed most prominently on the full PES). The prominent forward
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peak is completely absent in those DCSs, providing strong evidence that the attractive parts of the

potential are essential for the occurrence of the peak.
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Fig. S 5. QM DCSs for the O-end orientation calculated on the modified PESs, with the attractive parts
removed, for ∆ j = 3− 14 (final e states). The black trace represents the DCS calculated on the truncated
total potential (including Vsum and Vdif); the red and blue dashed traces represent the DCSs obtained on the
truncated A′ and A′′ potentials, respectively. All data are for the spin-orbit conserving transitions. Note that
the prominent forward scattered peak observed in the DCSs on the full potential is missing, indicating that
the attractive parts of the PES are crucial for the occurrence of this feature.

E. QM hardshell (QMHS) model calculations

In the quantum mechanical hardshell model,7,8 atoms and diatomic molecules are approximated

as rigid bodies, and any long range attractive forces are entirely neglected. In scattering processes

for which the attractive parts of the potential are unimportant, the model has been shown to be a

good approximation to the full QM calculation.7 Due to the removal of the attractive parts, QMHS

calculations should be comparable with calculations run on the truncated PESs.

The QMHS DCSs of an unoriented ensemble of NO molecules were calculated using the PES

contours at the experimental collision energy of 651 cm−1, treating the NO molecule as a closed-
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shell species. (Currently, the formalism only applies to closed-shell molecules; the calculations

were therefore run on the Vsum, rather than the full PES). Rotational states up to j′ = 21 and partial

waves up to J = 120 were included in the close-coupled equations. The results obtained on the

A′, A′′, and sum potentials are presented in Fig. S6. The DCSs are in qualitative agreement with

the ones calculated on the modified potentials in Fig. S5. Any differences may be attributed to

the fact that in Fig. S5 the molecules are oriented, while in Fig. S6 the initial distribution of the

molecules is isotropic. Once again, the absence of features in the very forward scattered region,

particularly in the A′ potential calculations, provides strong evidence that the attractive parts of

the potential are instrumental for the appearance of the prominent forward peak observed in the

full PES calculations for the spin-orbit changing transitions.
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Fig. S6. Isotropic (closed-shell) hardshell QM DCSs calculated on the A′ (red dashed line), A′′ (blue dashed
line), and sum (black line) potentials for ∆ j = 3−14. The hardshell was defined as the contour of the full
PES at the mean experimental collision energy of 651 cm−1. The DCSs are similar to the ones calculated
on the soft potential, with the prominent forward scattered peak missing.
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