Supporting information

Solvent effects on triplet-triplet annihilation upconversion kinetics of perylene with Bodipy-phenyl-C₆₀ photosensitizer

Yaxiong Wei,^{1,2} Ye Wang,^{3,4} Qiaohui Zhou,¹ Song Zhang,^{3,4,†}

Bing Zhang,^{3,4} Xiaoguo Zhou,^{1,†} and Shilin Liu¹

Contents

- 1. Gibbs free-energy calculations
- 2. Femtosecond time-resolved transient absorption spectra.
- 3. Nanosecond time-resolved transient absorption spectra
- 4. Decay curves of B-2 with different concentration of perylene
- 5. UV-Vis and fluorescence emission spectra of perylene in different solvents
- 6. The fitted parameters of TTA upconversion
- 7. The reported heavy-atom-free photosensitizers applied in TTA upconversion

1. Gibbs free-energy calculations

Using the redox potentials and the optimized molecular geometries, the thermodynamic driving forces for charge-recombination (ΔG_{CR}) and charge-separation (ΔG_{CS}), as well as charge-separated state energy (E_{CSS}), of Bodipy-phenyl-C₆₀ dyad were calculated with the Weller equations (S1)–(S3).

$$\Delta G_{CR} = -\left[E_{OX}\left(BDP^{+}/BDP\right) - E_{RED}\left(C_{60}/C_{60}^{-}\right)\right] - \Delta G_{s}$$
(S1)

$$\Delta G_{CS} = -\Delta G_{CR} - \Delta E_{00} \tag{S2}$$

$$E_{CSS} = \left[E_{OX}\left(BDP^{+}/BDP\right) - E_{RED}\left(C_{60}/C_{60}^{-}\right)\right] + \Delta G_{s}$$
(S3)

where $E_{OX}(BDP^+/BDP)$ was the half-wave potential for one electron oxidation of the electron donor Bodipy unit, $E_{RED}(C_{60}^-/C_{60})$ was the half-wave potential for oneelectron reduction of the electron acceptor C_{60} unit, ΔE_{00} was the crossing point of the absorption and fluorescence spectra, *e.g.* 2.36 eV for Bodipy-phenyl- C_{60} , and ΔG_s was the static Coulombic energy which could be calculated with the dielectric continuum model as the equation (S4).

$$\Delta G_s = -\frac{e^2}{4\pi\varepsilon_0\varepsilon_s R_{CC}} - \frac{e^2}{8\pi\varepsilon_0} \left(\frac{1}{R_D} + \frac{1}{R_A}\right) \left(\frac{1}{\varepsilon_{REF}} - \frac{1}{\varepsilon_s}\right)$$
(S4)

where e was the electronic charge, ε_0 , ε_s and ε_{REF} represented the vacuum permittivity, the dielectric constants of solvent and reference, respectively. In present experiments, the solvents were dichloromethane ($\varepsilon_s = 9.1$) and toluene ($\varepsilon_{REF} = 2.24$). R_{CC} was the center-to-center distance between the electron donor and the electron acceptor, which was 13.1 Å in the Bodipy-phenyl-C₆₀ dyad suggested by DFT optimized geometry. R_D and R_A represented the radius of electron donor and electron acceptor, and they were estimated to be 6.1 Å and 3.6 Å in the dyad by using the maximum extension radius of the molecular electron cloud in space.

Table S1 Electrochemical redox potentials of C₆₀, B-1 and B-2^a

	1	
	E(ox) / V	E(red) / V
C ₆₀	-	-0.67, -1.07, -1.52
Bodipy	1.12	-1.32
C ₆₀ -Bodipy	1.14	-0.79, -1.18, -1.32, -1.71

^a Cyclic voltammetry in Ar saturated DCM containing a 0.1 M Bu₄NPF₆ as supporting electrolyte. Working electrode was glassy carbon electrode, the counter electrode was Pt electrode, and the reference electrode was Ag/AgNO₃ electrode. Scan rates: 0.05 V/s, 20°C. Ferrocene (Fc) was used as internal reference ($E_{1/2}$ = +0.38 V) vs saturated calomel electrode (SCE).

Table S2 Dielectric constant (ε), static Coulombic energy (ΔG_s), thermodynamic driving forces for the charge-separation (ΔG_{CS}) and charge-separated state energy (E_{CCS})

Solvent	Е	$\Delta G_s/J$	$\Delta G_{CS}/eV$	E _{CCS} /eV
1,4-dioxane	2.21	+9.46×10 ⁻²⁰	+0.18	2.52
Toluene	2.24	+9.26×10 ⁻²⁰	+0.17	2.51
Chlorobenzene	5.65	+3.01×10 ⁻²¹	-0.39	1.95
Dichlorobenzene	6.83	-7.16×10 ⁻²¹	-0.45	1.93
THF	7.58	-1.20×10 ⁻²⁰	-0.49	1.89

2. Femtosecond time-resolved transient absorption spectra.

Figure S1. Femtosecond transient absorption spectra of B-2 in 1,4-dioxane, excited at 532 nm, 25°C.

Figure S2. Femtosecond transient absorption spectra of B-2 in toluene, excited at 532 nm, 25°C.

Figure S3. Femtosecond transient absorption spectra of B-2 in chlorobenzene, excited at 532 nm, 25°C.

Figure S4. Femtosecond transient absorption spectra of B-2 in dichlorobenzene, excited at 532 nm, 25°C.

Figure S5. Femtosecond transient absorption spectra of B-2 in THF, excited at 532 nm, 25°C.

3. Nanosecond time-resolved transient absorption spectra

Figure S6. Nanosecond time-resolved transient absorption spectra of B-2 in deaerated 1,4-dioxane.

Figure S7. Nanosecond time-resolved transient absorption spectra of B-2 in deaerated dichlorobenzene.

Figure S8. Nanosecond time-resolved transient absorption spectra of B-2 in deaerated chlorobenzene.

Figure S9. Nanosecond time-resolved transient absorption spectra of B-2 in deaerated THF.

Figure S10. Nanosecond time-resolved transient absorption spectra of B-2 and perylene in deaerated 1,4-dioxane.

Figure S11. Nanosecond time-resolved transient absorption spectra of B-2 and perylene in deaerated dichlorobenzene.

Figure S12. Nanosecond time-resolved transient absorption spectra of B-2 and perylene in deaerated chlorobenzene.

Figure S13. Nanosecond time-resolved transient absorption spectra of B-2 and perylene in deaerated THF.

4. Decay curves of B-2 with different concentration of perylene

Figure S14. Decay curves of B-2 with different concentration of perylene in dioxane.

Figure S15. Decay curves of B-2 with different concentration of perylene in dichlorobenzene.

Figure S16. Decay curves of B-2 with different concentration of perylene in chlorobenzene.

Figure S17. Decay curves of B-2 with different concentration of perylene in toluene.

Figure S18. Decay curves of B-2 with different concentration of perylene in THF.

Tolue	ene	Chlorobe	enzene	Dichlorob	enzene	Dioxa	ne	TH	F
c[Pery] ^a	τ/μs	c[Pery] ^a	τ/μs	c[Pery] ^a	τ/μs	c[Pery] ^a	τ/µs	c[Pery] ^a	τ/μs
0 (Air)	0.34	0 (Air)	0.34	0 (Air)	0.47	0 (Air)	0.44	0 (Air)	0.37
0 (Ar)	29.5	0 (Ar)	30.4	0 (Ar)	31.8	0 (Ar)	36.7	0 (Ar)	24.9
0.5	21.1	1.25	15.0	1.25	16.6	1.25	16.5	1.25	13.2
2.5	8.0	2.5	9.2	2.5	11.2	2.5	11.0	2.5	8.5
5.0	3.5	5.0	4.9	5.0	6.3	5.0	6.2	5.0	5.0
12.5	1.3	12.5	1.7	12.5	2.6	12.5	2.4	12.5	1.9
25	0.65	25	0.86	25	1.4	25	1.2	25	0.92
45	0.35	45	0.47	45	0.82	45	0.70	45	0.52

Table S3. Lifetime of triplet B-2 with different concentration of perylene.

^a The unit of perylene concentration, $\times 10^{-4}$ M.

5. UV-Vis and fluorescence emission spectra of perylene and B-2

Figure S19. UV-Vis absorption and fluorescence emission spectra of perylene in different solvents.

Figure S20. Dependence of normal fluorescence intensity of B-1 in toluene on the excitation power density at 532 nm.

Figure S21. A logarithmic plot of fluorescence intensity of B-1 with excitation power density at 532 nm.

6. The fitted parameters of TTA upconversion.

Solvent	Viscosity	Polarity	β	$k_{T}(10^{6} \text{ s}^{-1})$
THF	0.55	4.2	0.878	0.00441
Toluene	0.59	2.4	0.931	0.00240
Chlorobenzene	0.8	2.7	0.890	0.00321
Dichlorobenzene	1.33	2.7	0.865	0.00232
1,4-Dioxane	1.54	4.8	0.925	0.00137

Table S4. The fitted parameters, β and the first-order rate constants k_T , of TTA upconversion.

7. The reported heavy-atom-free photosensitizers in TTA upconversion.

Sensitizer	Acceptor	solvent	$\lambda_{ex} (nm)^a$	$\lambda_{em} (nm)^b$	Φ_{UC} (%) ^b	Ref.
C ₆₀ -C-2	perylene	toluene	589	450	7.0	4
4CzTPN-Ph	DPA	solid	532	435	0.3	5
4CzIPN	QP	benzene	445	355	3.9	6
4CzPN–DBP	DBP	toluene	450	390	3.7	7
compound-1	DPA	toluene	445	435	11.3	8
BB-1	perylene	CH_2Cl_2	532	450	3.7	9
BDP-TEMPO-2	perylene	toluene	520	450	6.7	10
4CzPN-DBP	DBP	toluene	450	390	1.7	11
BTZ-DMAC	DPA	toluene	532	435	1.9	12
BDP-AN-1	perylene	CH_2Cl_2	510	450	15.8	13
BDP-2	perylene	toluene	510	450	3.2	14
(NDI)-C ₆₀ -1	1CBPEA	toluene	589	500	0.5	15
TTM-1Cz	DPA	toluene	635	435	0.3	16
QDM	perylene	THF	532	450	0.2	17
Bodipy-C ₆₀	Perylene	toluene	532	450	8.0	18
Bodipy-C ₇₀	perylene	toluene	532	450	10.3	19
DCF-MPYM	DPA	THF	635	428	11.2	20

Table S5. The reported heavy-atom-free photosensitizers and annihilators, as well as their TTA upconversion performances.

^a Excitation wavelength; ^b Maximum of UC emission wavelength.

^b The maximum upconversion quantum yield of 100%.

Solvent	ε (25°C) ^a	$1/\tau_{1}$ (s ⁻¹)	$1/\tau_{2} (s^{-1})$
		1.61×10^{1}	
1,4-Dioxane	2.21	2	1.00×10 ⁸
		1.54×10 ¹	
Toluene	2.24	2	1.43×10 ⁸
		1.18×10 ¹	
Chlorobenzene	5.65	2	8.13×10 ⁸
Dichlorobenzen		1.47×10 ¹	
e	6.83	2	7.03×10 ⁸
		1.75×10 ¹	
THF	7.58	2	4.08×10 ⁸

Table S6. Dynamic rates of the transient absorption band of B-2 at 700 nm in different solvents.

References:

- [1] Q. Zhou, M. Zhou, Y. Wei, X. Zhou, S. Liu, S. Zhang, B. Zhang, *Phys. Chem. Chem. Phys.*, 2017, 19, 1516.
- [2] Olmsted, J. Calorimetric determinations of absolute fluorescence quantum yields. J. Phys. Chem., 1979, 83, 2581.
- [3] Frisch, M. et al. Gaussian 09, Revision A. 02, Gaussian. Inc., Wallingford, CT 200 (2009).
- [4] W. Wu, J. Zhao, J. Sun, S. Guo, J. Org. Chem. 2012, 77, 5305.
- [5] T. C. Wu, D. N. Congreve, M. A. Baldo, Appl. Phys. Lett. 2015, 107, 031103.
- [6] N. Yanai, M. Kozue, S. Amemori, R. Kabe, C. Adachi, N. Kimizuka, J. Mater. Chem. C 2016, 4, 6447.
- [7] J. Peng, X. Guo, X. Jiang, D. Zhao, Y. Ma, Chem. Sci. 2016, 7, 1233.
- [8] D. Huang, J. Sun, L. Ma, C. Zhang, J. Zhao, Photoch. Photobio. Sci. 2013, 12, 872.
- [9] W. Wu, X. Cui and J. Zhao, Chem. Commun. 2013, 49, 9009.
- [10] Z. Wang, J. Zhao, A. Barbon, A. Toffoletti, Y. Liu, Y. An, L. Xu, A. Karatay, H. G. Yaglioglu, E. A. s. Yildiz, J. Am. Chem. Soc. 2017, 139, 7831.
- [11] Q. Chen, Y. Liu, X. Guo, J. Peng, S. Garakyaraghi, C. M. Papa, F. N. Castellano, D. Zhao, Y. Ma, *J. Phys. Chem. A* 2018, *122*, 6673.
- [12] D. Wei, F. Ni, Z. Zhu, Y. Zou, C. Yang, J. Mater. Chem. C 2017, 5, 12674.
- [13] Z. Wang, J. Zhao, Org. lett. 2017, 19, 4492-4495.
- [14] K. Chen, W. Yang, Z. Wang, A. Iagatti, L. Bussotti, P. Foggi, W. Ji, J. Zhao, M. Di Donato, J. Phys. Chem. A 2017, 121, 7550.
- [15] S. Guo, J. Sun, L. Ma, W. You, P. Yang, J. Zhao, Dyes Pigm. 2013, 96, 449.
- [16] J. Han, Y. Jiang, A. Obolda, P. Duan, F. Li, M. Liu, J. Phys. Chem. Lett. 2017, 8, 5865.
- [17] S. Shokri, G. P. Wiederrecht, D. J. Gosztola, A. J.-L. Ayitou, J. Phys. Chem. C 2017, 121, 23377.
- [18] Y. Wei, M. Zhou, Q. Zhou, X. Zhou, S. Liu, S. Zhang, B. Zhang, *Phys. Chem. Chem. Phys.* 2017, 19, 22049.
- [19] Y. Wei, M. Zheng, Q. Zhou, X. Zhou, S. Liu, Org. Biomol. Chem. 2018, 16, 5598.
- [20] W. Chen, F. Song, S. Tang, G. Hong, Y. Wu, X. Peng, Chem. Commun. 2019, 55, 4375.