Supplementary Information

Matthew T. O. Okenyi^{*a*}, Laura E. Ratcliff^{**a*}, and Aron Walsh^{*a,b*}

December 22, 2020

\overline{m}	Frequency (THz)	Irreducible representation [?]	Space group after perturbation
			of <i>Pbcm</i> -optimized CRCA along
			mode
0	-37.87	Γ_2^-	$Pca2_1$
1	-34.59	Γ_4^+	$P2_1/c$
2	-33.84	Γ_1^-	$P2_{1}2_{1}2$
3	-33.51	Γ_4^-	$Pmc2_1$
4	-30.61	Γ_2^-	$Pca2_1$
5	-21.73	Γ_2^+	$P2_1/m$
6	-8.33	Γ_3^-	Pma2
7	0.00	Γ_1^+	Pbcm
8	0.00	Γ_1^+	Pbcm
9	0.00	Γ_1^+	Pbcm
10	1.90	Γ_1^-	$P2_{1}2_{1}2$
11	1.91	Γ_2^-	$Pca2_1$
12	2.23	Γ_1^+	Pbcm
13	2.73	Γ_4^-	$Pmc2_1$
14	2.82	Γ_2^+	$P2_1/m$
15	3.41	Γ_2^-	$Pca2_1$
16	3.52	Γ_3^-	Pma2
17	3.67	Γ_4^+	$P2_{1}/c$
18	3.91	Γ_1^-	$P2_{1}2_{1}2$
19	3.94	Γ_4^-	$Pmc2_1$
20	3.99	Γ_2^+	$P2_1/m$
21	4.02	Γ_4^+	$P2_1/c$
22	4.09	Γ_3^+	P2/c
23	4.19	Γ_3^-	Pma2
24	4.43	Γ_1^+	Pbcm
25	4.48	Γ_4^-	$Pmc2_1$
26	4.66	Γ_4^+	$P2_1/c$
27	4.70	Γ_2^+	$P2_1/m$
28	4.89	Γ_3^+	P2/c
29	5.13	Γ_3^-	Pma2
30	5.33	Γ_1^+	Pbcm

31	5.50	Γ_1^+	Pbcm
32	5.62	Γ_1^{-}	$P2_{1}2_{1}2$
33	5.70	Γ_2^+	$P2_1/m$
34	5.87	Γ_2^{-}	$Pca2_1$
35	6.05	Γ_3^+	P2/c
36	6.87	Γ_4^+	$P2_1/c$
37	7.54	Γ_{4}^{\pm}	$Pmc2_1$
38	7.73	Γ_1^{\ddagger}	Pbcm
39	7.85	Γ_2^{-}	Pma2
40	7.86	Γ_1^+	Pbcm
41	8.04	Γ_1^{-}	$P2_{1}2_{1}2$
42	8.91	Γ_2^{-}	$Pca2_1$
43	9.41	Γ_1^{-}	$P2_{1}2_{1}2_{1}$
44	9.57	Γ_4^{\perp}	$Pmc2_1$
45	9.68	Γ_3^+	P2/c
46	10.56	Γ_4^{-}	$Pmc2_1$
47	10.59	Γ_4^+	$P2_1/c$
48	11.24	Γ_3^{\pm}	Pma2
49	11.45	Γ_2^{-}	$Pca2_1$
50	11.64	$\Gamma_2^{\tilde{+}}$	$P2_1/m$
51	12.57	$\Gamma_3^{\tilde{+}}$	P2/c
52	12.59	$\Gamma_1^{\underline{\circ}}$	$P2_{1}^{'}2_{1}2_{1}2_{1}$
53	14.95	Γ_2^{-}	$Pca2_1$
54	14.97	Γ_4^{\mp}	$P2_{1}/c$
55	15.03	Γ_1^{-}	$P2_{1}2_{1}2$
56	15.11	Γ_3^+	P2/c
57	15.21	Γ_4^+	$P2_1/c$
58	15.26	Γ_4^{-}	$Pmc2_1$
59	15.26	Γ_1^+	Pbcm
60	15.27	Γ_3^-	Pma2
61	15.41	Γ_2^+	$P2_1/m$
62	15.54	Γ_1^+	Pbcm
63	15.66	Γ_2^+	$P2_1/m$
64	15.67	Γ_1^+	Pbcm
65	15.82	Γ_3^+	P2/c
66	15.84	Γ_3^-	Pma2
67	16.05	Γ_4^-	$Pmc2_1$
68	16.06	Γ_2^-	$Pca2_1$
69	16.42	Γ_3^-	Pma2
70	17.02	Γ_2^+	$P2_1/m$
71	17.88	Γ_4^-	$Pmc2_1$
72	18.30	Γ_1^+	Pbcm
73	18.71	Γ_4^+	$P2_1/c$
74	18.91	Γ_1^-	$P2_{1}2_{1}2$
75	20.20	Γ_3^-	Pma2

76	20.29	Γ_3^+	P2/c
77	20.34	Γ_2^+	$P2_1/m$
78	21.25	Γ_1^{+}	Pbcm
79	22.41	Γ_{4}^{+}	$P2_{1}/c$
80	22.42	Γ_1^{-}	$P2_{1}2_{1}2_{1}2_{1}$
81	22.42	Γ_2^{-}	$Pca2_1$
82	22.43	Γ_3^{+}	P2/c
83	22.99	Γ_{4}^{2}	$Pmc2_1$
84	23.00	Γ_3^{-}	Pma2
85	23.01	Γ_2^+	$P2_1/m$
86	23.02	Γ_1^{+}	Pbcm
87	25.23	Γ_1^{-}	$P2_{1}2_{1}2$
88	25.32	Γ_2^{-}	$Pca2_1$
89	25.92	Γ_3^{+}	P2/c
90	26.05	Γ_4^+	$P2_1/c$
91	30.07	Γ_{4}^{\pm}	$Pmc2_1$
92	31.43	Γ_1^{\pm}	$P2_{1}2_{1}2_{1}$
93	31.50	Γ_2^{-}	$Pca2_1$
94	31.77	Γ_3^+	P2/c
95	31.77	Γ_4^+	$P2_1/c$
96	32.01	Γ_3^{-}	Pma2
97	32.45	Γ_2^+	$P2_1/m$
98	32.65	Γ_1^{\mp}	Pbcm
99	32.75	Γ_4^{\perp}	$Pmc2_1$
100	34.15	Γ_2^{-}	$Pca2_1$
101	34.37	Γ_1^{-}	$P2_{1}2_{1}2$
102	34.67	Γ_4^+	$P2_1/c$
103	34.88	Γ_3^+	P2/c
104	36.08	Γ_4^{-}	$Pmc2_1$
105	36.31	Γ_3^{-}	Pma2
106	36.58	Γ_2^-	$Pca2_1$
107	36.67	Γ_2^{\mp}	$P2_1/m$
108	36.75	Γ_1^{-}	$P2_{1}2_{1}2$
109	36.75	Γ_4^{-}	$Pmc2_1$
110	36.77	Γ_1^+	Pbcm
111	36.82	Γ_3^{-}	Pma2
112	39.68	Γ_2^-	$Pca2_1$
113	39.73	Γ_4^+	$P2_1/c$
114	40.22	Γ_4^{-}	$Pmc2_1$
115	40.24	Γ_2^+	$P2_1/m$
116	41.89	Γ_1^+	Pbcm
117	42.79	Γ_3^-	Pma2
118	43.14	Γ_3^+	P2/c
119	43.23	Γ_1^{-}	$P2_{1}2_{1}2$
120	43.54	Γ_4^+	$P2_1/c$

121	43.86	Γ_4^-	$Pmc2_1$
122	43.93	Γ_2^-	$Pca2_1$
123	43.94	Γ_1^{-}	$P2_{1}2_{1}2$
124	44.14	Γ_1^+	Pbcm
125	44.67	Γ_3^{-}	Pma2
126	44.91	Γ_2^+	$P2_1/m$
127	44.92	Γ_2^{-}	$Pca2_1$
128	45.01	Γ_3^+	P2/c
129	45.21	Γ_1^{-}	$P2_{1}2_{1}2$
130	45.26	Γ_3^{-}	Pma2
131	45.51	Γ_3^+	P2/c
132	45.70	Γ_{4}^{-}	$Pmc2_1$
133	45.94	Γ_4^+	$P2_{1}/c$
134	46.07	Γ_1^-	$P2_{1}2_{1}2$
135	46.41	Γ_2^-	$Pca2_1$
136	47.16	Γ_2^+	$P2_1/m$
137	47.35	Γ_1^+	Pbcm
138	47.78	Γ_4^-	$Pmc2_1$
139	47.83	Γ_3^{-}	Pma2
140	48.82	Γ_4^-	$Pmc2_1$
141	48.83	Γ_2^+	$P2_1/m$
142	48.94	Γ_1^+	Pbcm
143	49.09	Γ_3^-	Pma2

Table 1: The frequencies and space group symmetry properties of the normal modes of Pbcmoptimized CRCA.

 ^a Department of Materials, Imperial College London, London SW7 2AZ, United Kingdom
^b Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Korea
* laura.ratcliff08@imperial.ac.uk