Two-Dimensional Diamine-Linked Covalent Organic Frameworks for CO₂/N₂ Capture and Separation: Theoretical Modeling and Simulations

Yusuf Bramastya Apriliyanto^{a,b}, Noviyan Darmawan^{a,c,*}, Noelia Faginas-Lago^{d,*} and Andrea Lombardi^d

^a Department of Chemistry, IPB University, Jl Tanjung Kampus IPB Dramaga, 16680, Bogor, Indonesia

- ^b Department of Chemistry, Indonesia Defense University, Kampus Unhan Komplek IPSC Sentul, 16810, Bogor, Indonesia
- ^c Halal Science Center, LPPM, IPB University, Kampus IPB Baranangsiang, 16144, Bogor, Indonesia
- ^d Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy

Supporting Information

Tel: +39 075 585 5527. E-mail address: noelia.faginaslago@unipg.it (Noelia Faginas-Lago).

Fig. S1. Total energy of IPB-1H tested against various cutoff energies. The energy convergence was achieved and a cutoff energy of 700 eV was considered as the best choice in term of computational efficiency

Table S1. Total energy of IPB-1H tested against various Monkhorst-Pack k-point grids

k-point grids	Total Energy (Ry)
$1 \times 1 \times 1$	-528.87167360
$2 \times 2 \times 1$	-528.87133963
$3 \times 3 \times 1$	-528.87133880
$4 \times 4 \times 1$	-528.87133921
$5 \times 5 \times 1$	-528.87134026
$6 \times 6 \times 1$	-528.87133921
$7 \times 7 \times 1$	-528.87133750

*By considering the energy fluctuation, the k-point grids of $5 \times 5 \times 1$ was considered as the best choice in term of computational efficiency.

Geometry Parameters	PBE	PBE0
Cm – Hz	1.12 Å	1.11 Å
Nf – Nf	1.40 Å	1.39 Å
Cm – Nf	1.46 Å	1.45 Å
Cb – Cm	1.52 Å	1.51 Å
Cb – Ch	1.41 Å	1.40 Å
Ch – Hb	1.10 Å	1.09 Å
Nf – Hn	1.03 Å	1.02 Å
Cb - Ch - Cb	121.00°	120.97°
Ch - Cb - Ch	118.97°	119.05°
Cb - Cm - Nf	110.97°	111.23°
Ch - Cb - Cm	120.53°	120.39°
Cb – Ch – Hb	119.39°	118.63°
Cm - Nf - Hn	110.71°	111.32°
Cm - Nf - Nf	118.30°	118.19°
Hb - Ch - Cb - Ch	179.14°	179.09°
Ch - Cb - Ch - Cb	0.57°	0.34°
Cm - Nf - Nf - Cm	46.41°	46.55°
Hn - Nf - Nf - Hn	150.35°	148.00°
Hz - Cm - Nf - Hn	179.53°	179.69°
Hy - Cm - Nf - Hn	62.84°	63.40°

Table S2. Structural comparison of IPB-1H between PBE and PBE0 functionals (GGA and hybrid correlation methods, respectively)

*Both functionals produced a similar molecular geometry. The unit cell of IPB-1H and its partial atomic labeling are given by the following figure.

Table S3. Atomic charges of 2D-COFs used for MD simulations

IP	IPB-1H		IPB-2H		
Atom	Charge	Atom	Charge		
Type*	(e)	Type*	(e)		
Nf	-0.1250	Nf	-0.1426		
Hn	0.0986	Hn	0.1039		
Cm	0.0052	Cm	0.0160		
Hz	0.0168	Hm	0.0277		
Ну	0.0301	Hb	0.0300		
Hb	0.0236	Cb	0.0100		
Cb	0.0026	Ch	-0.0497		
Ch	-0.0519	Cn	0.0380		
		Ср	-0.0590		
		Нр	0.0285		

*Atom type (labeling) description is shown in Fig. 2 of the main text

Fig. S2. Molecular representation of CO₂ and N₂ molecules with atom labeling and corresponding charges (e). Cx is the symbol of carbon atom, and Q is a point charge representing the C–O bond of CO₂ molecule. X is a point charge representing the N–N bond of the N₂ molecule

Table S4. ILJ parameters used for 2D-COFs – CO_2/N_2 MD simulations

Interacting	IPB-1H				ІРВ-2Н			
Molecules	Pair	ε (meV)	$r_{\theta}(\text{\AA})$	β	Pair	ε (meV)	$r_{\theta}(\text{\AA})$	β
	Cx – Cx	3.416	3.317	9.00	Cx – Cx	3.416	3.317	9.00
$CO_2 - CO_2$	0-0	5.519	3.653	9.00	0-0	5.519	3.653	9.00
	Cx – O	5.340	3.363	8.50	Cx – O	5.340	3.363	8.50
$N_2 - N_2$	N - N	3.526	3.770	9.00	N - N	3.526	3.770	9.00
$N_{e} = CO_{e}$	N – Cx	3.400	3.548	9.00	N – Cx	3.400	3.548	9.00
$1_{1_2} - CO_2$	N – O	4.500	3.699	9.00	N - O	4.500	3.699	9.00
	Ch – Cx	3.686	3.613	7.00	Ch - Cx	3.686	3.613	7.00
	Cb – Cx	3.686	3.613	7.00	Cb – Cx	3.686	3.613	7.00
	Cm – Cx	3.868	3.553	7.00	Cm – Cx	3.868	3.553	7.00
	Nf - Cx	4.130	3.525	7.00	Nf - Cx	4.130	3.525	7.00
	Hb – Cx	2.120	3.178	7.00	Hb – Cx	2.120	3.178	7.00
	Hn – Cx	2.120	3.178	7.00	Hn – Cx	2.120	3.178	7.00
	Hy – Cx	2.120	3.178	7.00	Hm – Cx	2.120	3.178	7.00
	Hz – Cx	2.120	3.178	7.00	Hp – Cx	2.120	3.178	7.00
	Ch – O	4.994	3.752	7.00	Ch – O	4.994	3.752	7.00
$COFs - CO_2$	Cb – O	4.994	3.752	7.00	Cb – O	4.994	3.752	7.00
	Cm – O	5.131	3.702	7.00	Cm – O	5.131	3.702	7.00
	Nf-O	5.424	3.679	7.00	Nf-O	5.424	3.679	7.00
	Hb – O	2.354	3.410	7.00	Hb – O	2.354	3.410	7.00
	Hn – O	2.354	3.410	7.00	Hn – O	2.354	3.410	7.00
	Hy – O	2.354	3.410	7.00	Hm – O	2.354	3.410	7.00
	Hz – O	2.354	3.410	7.00	Hp – O	2.354	3.410	7.00
					Cp – Cx	3.686	3.613	7.00
					Cn - Cx	3.686	3.613	7.00
					Cn – O	4.994	3.752	7.00
					Cp – O	4.994	3.752	7.00
	Ch – N	4.090	3.796	7.50	Ch – N	4.090	3.796	7.50
	Cb – N	4.090	3.796	7.50	Cb – N	4.090	3.796	7.50
	Cm – N	4.181	3.745	7.50	Cm – N	4.181	3.745	7.50
	Nf - N	4.409	3.723	7.50	Nf - N	4.409	3.723	7.50
$COFs - N_2$	Hb – N	1.844	3.477	7.50	Hb – N	1.844	3.477	7.50
~-`2	Hn – N	1.844	3.477	7.50	Hn – N	1.844	3.477	7.50
	Hy – N	1.844	3.477	7.50	Hm – N	1.844	3.477	7.50
	Hz – N	1.844	3.477	7.50	Hp – N	1.844	3.477	7.50
					Cn – N	4.090	3.796	7.50
					Cp – N	4.090	3.796	7.50

Pressure (atm)	Total Molecules	CO ₂ (Molecules)	N ₂ (Molecules)
1.00	26	13	13
1.80	48	24	24
2.54	66	33	33
3.18	84	42	42
4.00	106	53	53
4.62	122	61	61
5.47	144	72	72

Table S5. Amount of gas molecules and the corresponding pressure in the simulation box of CO_2/N_2 gaseous mixtures at 353 K

Fig. S3. Adsorption energy profiles of IPB-1H in perpendicular and parallel geometries of gas molecules as a function of z (i.e., distance from the center of the linker)

Fig. S4. Adsorption energy profiles of IPB-2H as a function of z (i.e., distance from the building unit)

Fig. S5. Adsorption energy profiles of IPB-2H as a function of z (i.e., distance from the linker)

Note: the adsorption energy of CO₂ and N₂ at the center of IPB-2H pore were too small and negligible, thus the in-pore adsorption energy profiles were not calculated further.

10**3.74**0 A

Fig. S6. Dimension of IPB-1H used for MD simulations. A periodic boundary condition was applied in all directions of the simulation box to simulate an infinite planar sheet

78.098 Å

Fig. S7. Dimension of IPB-2H used for MD simulations. A periodic boundary condition was applied in all directions of the simulation box to simulate an infinite planar sheet

Fig. S8. The time evolution of temperature and energy of IPB-1H (left panel) and IPB-2H (right panel) systems for gaseous mixture at 5.47 atm and 353 K. Upper panel: temperature convergence evaluation during the equilibration period. Lower panel: energy convergence evaluation during the simulation (equilibration and production)

Fig. S9. The convergence of gas permeation rate evaluated at different production times for IPB-1H and IPB-2H in CO_2/N_2 gaseous mixture systems at 5.47 atm and 353 K

System	P (atm)	Temperature (K)			Configuration Energy (Kcal/mol)			
		Average	r.m.s. Fluctuation	Relative Fluctuation (%)	Average	r.m.s. Fluctuation	Relative Fluctuation (%)	
	1.00	353	41.69	11.81	-203.68	4.24	2.08	
IPB-1H	1.80	353	29.46	8.34	-206.08	3.49	1.69	
	2.54	353	26.52	7.51	-209.13	4.88	2.33	
	3.18	353	22.82	6.47	-212.84	5.26	2.47	
	4.00	353	20.97	5.94	-214.33	5.06	2.36	
	4.62	353	20.09	5.69	-217.19	5.43	2.50	
	5.47	353	19.03	5.39	-220.95	5.49	2.48	
	1.00	353	41.11	11.64	-159.27	4.44	2.79	
	1.80	353	32.32	9.16	-161.56	4.60	2.84	
IPB-2H	2.54	353	26.62	7.54	-164.26	4.23	2.57	
	3.18	353	25.97	7.36	-164.68	3.82	2.32	
	4.00	353	21.58	6.11	-167.91	4.61	2.75	
	4.62	353	20.45	5.79	-170.86	4.42	2.59	
	5.47	353	18.15	5.14	-175.05	5.44	3.11	

Table S6. The resume of temperature and energy fluctuations during the MD simulations