Electronic Supplementary Information (ESI)

Single Atom Doped Arsenene as Elecocatalysts for Reducing Nitrogen to Ammonia: A DFT Study

Ziwei Xu, ^{#,*} Ruofei Song, [#] Mingyuan Wang, Xiangzhao Zhang, Guiwu Liu and

Guanjun Qiao

School of Materials Science and Engineering, Jiangsu University, 212013 Zhenjiang,

China

*Corresponding Author, E-mail address: <u>ziweixu2014@ujs.edu.cn</u>

[#] These authors contributed equally to this study.

Metal (m)	$d_{m-As}(\mathbf{\hat{A}})$
V	2.47
Cr	2.46
Fe	2.39
Со	2.27
Cu	2.37
Ru	2.36
Pd	2.44
Ag	2.54
Pt	2.41
Au	2.49

 Table S1 The average bond lengths of metal-As.

 Table S2 The band gap values (DFT-PBE level) of TM doped arsenene.

TM/Ars	Band gap value (eV)
V/Ars	~ 0.00
Cr/Ars	0.78
Fe/Ars	~ 0.00
Co/Ars	0.66
Cu/Ars	~ 0.00
Ru/Ars	0.25
Pd/Ars	~ 0.00
Ag/Ars	~ 0.00
Pt/Ars	~ 0.00
Au/Ars	~ 0.00

Metal (m)	$d_{N-N}(\text{\AA})$	$Q_{system-N_2}$ (e)
V	1.13	0.32
Cr	1.12	0.21
Fe	1.14	0.35
Со	1.13	0.20
Ru	1.13	0.28

Table S3 The Gibbs free energies change of N_2 adsorption with the most favorable manner, and the distant of N-N bond. Bader charge for TM-doped system and N_2 molecule.

Table S4 The comparable results of this work and the others NRR catalysts.

Catalysts	U _{oneset} (V)	Refs.
V/Ars	-0.26	In this work
B-B ₁ P and B-B _b P	-0.78 and -0.92	1
Ru/ Boron	-0.42	2
Ru ₁ @C ₂ N, Ru ₁ @T-C ₃ N ₄ , and Ru ₁ @γ-graphynes	-0.94, -0.96 and -0.98	3
W@g-C ₃ N ₄	-0.35	4
Mo@C ₂ N	-0.17	5
V@β ₁₂ -Boron	-0.28	6
B/g-C ₃ N ₄	-0.20	7

Fig. S1 The pristine arsenene nanosheet of (a) top view and side view, and (b) the corresponding band structure (DFT-PBE level). The Fermi-level is set to be zero denoted by dash line. The green color is represented for arsenic atom.

Fig. S2 Electronic band structures (DFT-PBE level) of TM atoms (i.e., V, Cr, Fe, Co, Cu, Ru, Pd, Ag, Pt and Au) doped arsenene. The Fermi-level is indicated by the dash line, and red and blue spots represents TM contributions from majority and minority spins.

Fig. S3 The N₂ adsorption on TM/Ars with end-on and side-on configurations.

Fig. S4 Free energies profiles for Fe-, Co-, Ru-doped arsenene nanosheet via distal ways (i.e., (a) (c) (e)) and alternating ways (i.e., (b) (d) (f)).

Fig. S5 The variation of the N=N bond length (d_{N-N}) via the enzymatic pathway on V/Ars electrocatalyst for NRR process.

Reference

- 1. Y. W. Cheng, Y. Song and Y. M. Zhang, Phys. Chem. Chem. Phys., 2019, 21, 24449-24457.
- C. W. Liu, Q. Y. Li, J. Zhang, Y. G. Jin, D. R. MacFarlane and C. H. Sun, *J. Mater. Chem. A*, 2019, 7, 4771-4776.
- Y. Y. Cao, Y. J. Gao, H. Zhou, X. L. Chen, H. Hu, S. W. Deng, X. Zhong, G. L. Zhuang and J. G. Wang, *Adv. Theor. Simul.*, 2018, 1, 1800018.
- 4. Z. Chen, J. X. Zhao, C. R. Cabrera and Z. F. Chen, Small Methods, 2019, 3, 1800368.
- 5. Z. X. Wang, Z. G. Yu and J. X. Zhao, Phys. Chem. Chem. Phys., 2018, 20, 12835-12844.
- 6. H.-R. Zhu, Y.-L. Hu, S.-H. Wei and D.-Y. Huai, J. Phys. Chem. C, 2019, 123, 4274-4281.
- 7. C. Ling, X. Niu, Q. Li, A. Du and J. Wang, J. Am. Chem. Soc., 2018, 140, 14161-14168.