Supporting Information

Temperature- and Pressure-dependent Rate Coefficient

measurement for the Reaction of CH₂OO with CH₃CH₂CHO

Yiqiang Liu,^{a,b}, Xiaohu Zhou,^{b,c,d} Yang Chen,^{b,e,f} Maodu Chen,^{a*} Chunlei Xiao,^b Wenrui Dong^{b*} and Xueming Yang^{b,g*}

- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, China
- b. State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- c. Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
- d. Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- e. Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
- f. University of Chinese Academy of Sciences, Beijing, 100049, China
- g. Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China

AUTHOR INFORMATION

Corresponding Author

- * E-mail: mdchen@dlut.edu.cn
- * E-mail: wrdong@dicp.ac.cn
- * E-mail: xmyang@dicp.ac.cn

Table of Contents:

I.	Experimental conditions	.S3
	Table S1	S 3
	Table S2·····	S 4
II.	Error analysis	.S5
	Table S3	S 6
III.	OH ($\nu''=1$) product from the unimolecular reaction of CH ₂ OO	.S7
	Table S4·····	S 8
	Table S5·····	S 9
Ref	erenceS	\$10

Experimental conditions

Table	S1.	Summary	of	experimental	conditions	for	the	reaction	of	CH ₂ OO	+
CH ₃ CI	H ₂ CF	IO at 298 K	an	d different pre	ssures. I ₂₄₈ ~	17.8	mJ c	² .			

Exp #	P / Torr	$CH_2I_2/10^{14} \text{ cm}^{-3}$	$O_2 / 10^{16} \text{ cm}^{-3}$	$k_3 + k_5' / s^{-1}$	$k_4 / 10^{-12} \text{ cm}^3 \text{ s}^{-1}$
1-1	10	2.04	1.57	378	2.79 ± 0.21
1-2	5	2.54	1.35	484	2.39 ± 0.22
1-3	50	2.48	1.89	857	3.12 ± 0.19
1-4	200	1.77	2.10	1419	3.39 ± 0.21
1-5	100	2.27	2.08	1423	3.08 ± 0.19
2-1	5.2	2.54	1.63	491	2.52 ± 0.24
2-2	10	2.24	1.82	576	2.58 ± 0.24
2-3	25	2.46	1.81	769	3.07 ± 0.20
2-4	75	1.91	1.97	1030	3.30 ± 0.20
2-5	150	2.32	2.90	1517	3.18 ± 0.20
2-6	100	2.21	2.16	1317	3.09 ± 0.19
2-7	75	1.91	1.97	1255	3.08 ± 0.19
2-8	200	1.86	2.43	1532	3.04 ± 0.19
3-1	5.2	2.53	1.57	551	2.42 ± 0.23
3-2	50	2.47	1.89	903	3.21 ± 0.20
3-3	100	2.25	1.98	1259	3.25 ± 0.20
3-4	150	2.44	2.30	1465	3.19 ± 0.20
3-5	200	2.11	2.67	1628	3.18 ± 0.20
3-6	10	2.28	1.82	610	2.58 ± 0.19
3-7	25	2.37	1.81	740	3.02 ± 0.19
3-8	75	2.04	1.96	1310	3.13 ± 0.19

The k_4 in Table S1 was plotted against the total number of density, as shown in Figure 4 of the Main Text. The error of k_4 is the combination of 1σ value of k_4 form the linear fit of k_4' against [CH₃CH₂CHO] and the error arises from neglecting the decomposition

of OH ($v'' \ge 1$) in fitting the temporal profiles of OH(v'' = 0). Systematic uncertainty is not included.

Table S2. Summary of experimental conditions for the reaction of CH₂OO with CH₃CH₂CHO at several temperatures and 50 Torr. $I_{248} = \sim 17.8$ mJ cm⁻², [CH₂I₂] = $\sim 2.5 \times 10^{14}$ cm⁻³. The error of k_4 is 14%.

Exp #	T / K	$O_2 / 10^{16} cm^{-3}$	$k_3 + k_5' / s^{-1}$	$k_4 / 10^{-12} \mathrm{cm}^3 \mathrm{s}^{-1}$
4-1	318	1.83	662	2.41 ± 0.34
4-2	318	1.83	760	2.27 ± 0.32
4-3	308	1.89	767	2.66 ± 0.37
4-4	308	1.89	881	2.71 ± 0.38
4-5	298	1.96	831	2.90 ± 0.41
4-6	298	1.96	802	3.36 ± 0.47
4-7	298	1.96	854	3.11 ± 0.44
4-8	283	2.06	878	3.58 ± 0.50
4-9	283	2.06	839	3.55 ± 0.50
4-10	283	2.06	808	3.56 ± 0.50
5-1	318	1.83	753	2.44 ± 0.34
5-2	318	1.83	811	2.43 ± 0.34
5-3	318	1.83	843	2.35 ± 0.33
5-4	308	1.89	863	2.58 ± 0.36
5-5	308	1.89	955	2.68 ± 0.38
5-6	308	1.89	920	2.57 ± 0.36
5-7	298	1.96	933	2.87 ± 0.40
5-8	298	1.96	989	3.06 ± 0.43
5-9	298	1.96	859	3.03 ± 0.42
5-10	298	1.96	878	3.17 ± 0.44
5-11	283	2.06	792	3.58 ± 0.50
5-12	283	2.06	1404	3.46 ± 0.48

II. Error analysis

The error for the rate coefficients k_4 is determined as the followings:

a) The estimation of [CH₂OO]₀

 $[CH_2OO]_0$ was calculated as $y \times f \times [CH_2I_2]$.

y is the fraction of CH₂I₂ that were photolyzed by 248 nm laser (CH₂I₂ + $hv \rightarrow$ CH₂I + I), and it was calculated as (F/ hv_{248}) × σ_{248} . F denotes the laser fluence, and σ_{248} is the absorption cross-section of CH₂I₂ at 248 nm (1.6 ×10⁻¹⁸ cm² molecule⁻¹).¹ In the current experimental condition, y is about 2.55%.

f is the yield of CH₂OO from the reaction of CH₂I + $O_2 \rightarrow$ CH₂OO + I. The pressure-dependent yield of this reaction was calculated in reference to previous experimental result.²

The $[CH_2I_2]_0$ was measured by a deep UV LED (DUV325-H46, Roithner Lasertechnik, centered at 322.4 nm) and a balanced amplified photodetector (PDB450A, Thorlabs), with known absorption cross-section and LED emission profile.

b) Error analysis

Considering errors in flow rate (2%), pressure (4%), temperature (1%), the fluence of the LED light source (5%) and the UV absorption cross-section of CH_2I_2 (6%), we estimated the error of $[CH_2I_2]$ to be 9%.

Considering the errors of the CH₂OO yield from CH₂I + O₂ reaction (20%), the fluence of photolysis laser (5%), the UV absorption cross-section of CH₂I₂ (6%) and $[CH_2I_2]$ (9%), the error of $[CH_2OO]_0$ was calculated to be 24%.

The error of the self-reaction rate coefficient of CH₂OO, k_6 , was estimated to be 50%.² Hence, the error of [CH₂OO]₀ × k_6 is about 55%. Table S3 shows the values of k_4 when varying the product of [CH₂OO]₀ and k_6 . According to Table S3, we estimated the error of k_4 caused by the error of [CH₂OO]₀ × k_6 is 2% (see our previous publication for details).³

Considering the errors from fitting the OH decay profiles (5%), neglecting the decomposition of OH ($\nu''=1$) (7% at 5 Torr, 2% at 10 and 25 Torr, 1% for P \geq 50 Torr), the linear fits (6%), the absolute [CH₃CH₂CHO] (10%) and [CH₂OO]₀ × k_6 (2%), the

overall error of k_4 was estimated to be ~14% (14.6% at 5 Torr, 13.4% at 10 and 25 Torr, 13.0% for P \geq 50 Torr).

			[CH ₂ OO] ₀	<i>k</i> 4	<i>k</i> 4	
Pressure/	$[CH_2OO]_0$	[CH ₂ OO] ₀	$\times k_6 \times (1 \pm$	/ 10 ⁻¹² cm ³	/ 10 ⁻¹² cm ³	Uncertainty
Temperature	$/ 10^{12} \mathrm{cm}^3$	$\times k_6 / s^{-1}$	55%) / s ⁻¹	s ⁻¹	s ⁻¹	/ %
50 Torr	5.01	472	213	2.418	2 405	0.55
318 K	5.91	475	733	2.438	2.405	1.38
50 Torr	C 15	516	232	2.698	2 707	0.34
308 K	0.43	510	800	2.711	2.707	0.15
50 Torr	6.65	520	239	2.988	2.020	1.36
298 K	6.65	552	825	3.040	3.029	0.37
50 Torr	(21	407	224	3.538	2 5 8 0	1.18
283 K	6.21	497	770	3.579	3.580	0.03
298 K	6.09	503	226	2.36	2.39	1.26
5 Torr			780	2.40		0.42
298 K	5.59	447	201	3.11	3.12	0.32
25 Torr			693	3.13		0.32
298 K	5.42	434	195	3.08	3.09	0.33
100 Torr			673	3.10		0.33
298 K	4.24	339	152	3.23	3.18	1.57
200 Torr			525	3.15		0.95

Table S3. The error of k_4 caused by the error of $[CH_2OO]_0 \times k_6$.

III. OH (v''=1) product from the unimolecular reaction of CH₂OO

CH₂OO is produced through the following reactions:

$$\operatorname{CH}_2 \operatorname{I}_2 + hv \xrightarrow{k_1} \operatorname{CH}_2 \operatorname{I} + \operatorname{I}$$
 (R1)

$$CH_2I + O_2 \xrightarrow{k_{2a}} CH_2OO + I$$
 (R2a)

$$CH_2I + O_2 \xrightarrow{k_{2b}} other products$$
 (R2b)

The consumption of CH₂OO upon its generation in the experiment included the following reactions:

$$CH_2OO \xrightarrow{k_{3a}} OH + HCO$$
 (R3a)

$$CH_2OO \xrightarrow{k_{3b}} other products$$
 (R3b)

$$CH_2OO + CH_3CH_2CHO \xrightarrow{k_4} products$$
 (R4)

$$CH_2OO + X \xrightarrow{k_5} products$$
 (R5)

$$CH_2OO + CH_2OO \xrightarrow{k_6} products$$
 (R6)

The formation of CH₂OO and OH (v''=0, 1) takes place on the time scale of a few microseconds.⁴⁻⁶ The consumption of OH (v''=0, 1) are from reaction (R7) and (R8):

OH
$$(\nu''=0) + Y \xrightarrow{\kappa_7} \text{ products}$$
 (R7)

OH
$$(v''=1) + Z \xrightarrow{k_8} OH (v''=0) + Z$$
 (R8)

Here, X denotes the species that react with CH₂OO, such as I and CH₂I₂. Y denotes species that contribute to the loss of OH ($\nu''=0$), e.g., IO and CH₂I₂. Z denotes the species that contribute to the collisional relaxation of OH ($\nu''=1$) to OH ($\nu''=0$), mainly by O₂⁷ and Ar ⁸ (for details, see Table S4).

Without considering the effect of OH ($\nu''=1$), the time-dependent OH concentration can be written as ES1:

$$\frac{d[OH](v''=0)}{dt} = -k_7'[OH](v''=0) + k_{3a}[CH_2OO]$$
(ES1)

The time-dependent of OH ($\nu''=0$) signal can be given as (ES2). A detail derivation for this expression was provided in our previous publication.⁹

$$S_{\text{OH}(v''=0)}(t) = \frac{A_0(k_3 + k'_4 + k'_5)}{(k_3 + k'_4 + k'_5)e^{(k_3 + k'_4 + k'_5)t} + 2k_6[\text{CH}_2\text{OO}]_0(e^{(k_3 + k'_4 + k'_5)t} - 1)} - A_1e^{k'_7t}$$
(ES2)

where $A_0 = \gamma \frac{k_{3a}[CH_2OO]_0}{k_7' - (k_3 + k_4' + k_5')}$, $A_1 = \gamma (\frac{k_{3a}[CH_2OO]_0}{k_7' - (k_3 + k_4' + k_5')} - [OH]_0(\nu'' = 0))$, γ is the detection efficiency of OH ($\nu'' = 0$). $k_4' = k_4[CH_3CH_2CHO]$, $k_5' = k_5[X]$, $k_7' = k_7[Y]$. k_6 was fixed at 8×10^{-11} cm³ s⁻¹ from the results of Ting *et al.*²

Considering the OH (v''=1), the time-dependent OH concentration can be obtained by the ES3 expression instead of ES1:

$$\frac{d[OH](v''=0)}{dt} = -k_7'[OH](v''=0) + k_8'[OH](v''=1) + k_{3a}[CH_2OO]$$
(ES3)

 $k_8' = k_8[Z]$ represent the collisional relaxation rate of OH (v''=1) to OH (v''=0). Then, the new expression of time-dependent of OH (v''=0) signal could be derived as:

$$S'_{\text{OH}(v''=0)}(t) = \frac{A_0'(k_3 + k'_4 + k'_5)}{(k_3 + k'_4 + k'_5)e^{(k_3 + k'_4 + k'_5)t} + 2k_6[\text{CH}_2\text{OO}]_0(e^{(k_3 + k'_4 + k'_5)t} - 1)} - A_1'e^{k'_7t} - A_2'e^{k'_8t}$$
(ES4)

in the expression (ES4),
$$A_0' = \gamma \frac{k_{3a}[CH_2OO]_0}{k_7' - (k_3 + k_4' + k_5')}, A_1' = \gamma (\frac{k_{3a}[CH_2OO]_0}{k_7' - (k_3 + k_4' + k_5')} - [OH]_0 (v'' = 0) - \frac{k_8'[OH]_0(v''=1)}{k_8' - k_7'}), A_2' = \gamma \frac{k_8'[OH]_0(v''=1)}{k_8' - k_7'}, \gamma$$
 is the detection efficiency of OH (v''= 0).

Using the expression (ES4), kinetic fitting was performed for OH decay trace by varying the parameters A_0' , A_1' , A_2' , $(k_3 + k_4' + k_5')$, k_7' and k_8' . A comparison of k_4 from the fit between (ES2) and (ES4) are shown in table S5. The difference between the two fitting models decreases as pressure increases, and the value is about 1% at the pressure higher than 25 Torr.

Table S4. A list of the relaxation rate of OH (v''=1) by O₂, Ar, and from the single exponential fit to the OH (v''=1) profiles in Figure 1.

Pressure	[Ar]	[O ₂]	^a $k_{\rm Ar} \times [\rm Ar]$	^b $k_{O2} \times [O_2]$	exponential
/ Torr	/ cm ⁻³	/ cm ⁻³	/ s ⁻¹	/ s ⁻¹	fit / s ⁻¹
10	2.8×10^{17}	1.7×10^{16}	< 280	2669 ± 527	2857
50	1.4×10^{18}	7.2×10^{16}	< 1400	11304 ± 2232	11322

^a k_{Ar} is the relaxation rate coefficient of OH (v''=1) by Ar. An upper limit value of 1 ×

 10^{-15} cm³ s⁻¹ at 298 K was adopted.^{8 b} k_{02} is the relaxation rate coefficient of OH (v''=1) by O₂. $k_{O2} = (1.57 \pm 0.31) \times 10^{-13}$ cm³ s⁻¹ at 295 K.⁷

Table S5. A list of k_4 from fitting temporal profiles of OH ($v''=0$) at 298 K and pressure
ranging from 5 to 200 Torr with equation ES2 and ES4.

Exp	Pressure	$k_4 / 10^{-12} \text{ cm}^3 \text{ s}^{-1}$		Difference	Percentage
#	/ Torr	ES2	ES4	$/ 10^{-12} \text{ cm}^3 \text{ s}^{-1}$	/ %
1-2	5	2.39	2.53	0.14	5.9
2-1	5.2	2.52	2.61	0.09	3.6
3-1	5.2	2.42	2.59	0.17	7.0
1-1	10	2.79	2.91	0.12	4.3
2-2	10	2.58	2.60	0.02	0.8
3-6	10	2.58	2.54	-0.04	1.6
2-3	25	3.07	3.01	-0.06	2.0
3-7	25	3.02	2.95	-0.07	2.3
1-3	50	3.12	3.15	0.03	1.0
2-4	75	3.30	3.34	0.04	1.2
3-4	150	3.19	3.16	-0.03	0.9
1-4	200	3.39	3.38	0.01	0.3

REFERENCES

- 1. J. C. Mössinger, D. E. Shallcross and R. A. Cox, *J. Chem. Soc., Faraday Trans*, 1998, **94**, 1391-1396.
- 2. W. L. Ting, C. H. Chang, Y. F. Lee, H. Matsui, Y. P. Lee and J. J. Lin, *J. Chem. Phys.*, 2014, **141**, 104308.
- 3. X. Zhou, Y. Liu, Y. Chen, X. Li, C. Xiao, W. Dong and X. Yang, *J. Phys. Chem. A*, 2020, **124**, 6125-6132.
- N. U. M. Howes, Z. S. Mir, M. A. Blitz, S. Hardman, T. R. Lewis, D. Stone and P. W. Seakins, *Phys. Chem. Chem. Phys.*, 2018, 20, 22218-22227.
- 5. J. H. Lehman, H. Li and M. I. Lester, *Chem. Phys. Lett.*, 2013, **590**, 16-21.
- 6. J. H. Lehman, H. Li, J. M. Beames and M. I. Lester, J. Chem. Phys., 2013, **139**, 141103.
- D. C. McCabe, I. W. M. Smith, B. Rajakumar and A. R. Ravishankara, *Chem. Phys. Lett.*, 2006, **421**, 111-117.
- 8. Ian W. M. Smith and M. D. Williams, *J. Chem. Soc., Faraday Trans.* 2, 1985, **81**, 1849-1860.
- 9. X. Zhou, Y. Liu, W. Dong and X. Yang, J. Phys. Chem. Lett., 2019, 10, 4817-4821.