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1 Calculations for the Mean-Field Lattice Model

1.1 Estimating the Number of Configurations

Here is a summary of the notation for the model system from Section 2.2 of the Main Paper.

Our model system has a single sphere in a solution of volume V . The model solution

volume is filled by a simple cubic lattice, with the number of lattice sites in this volume

denoted by Vlatt. The surface of the sphere is covered by a two-dimensional lattice with

coordination number q (that is, each site on the surface has exactly q neighboring sites). We

assume that the distance between lattice sites corresponds to the distance between adjacent
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monomers within a polymer. We assume that in equilibrium, every lattice site in the surface

is covered by an adsorbed monomer. We also assume that in each polymer, either every

monomer is adsorbed or else no monomer is adsorbed.

We assume that our model system has nL “long” chains, each with LL monomers, as well

as nS “short” chains, each with LS monomers.

We define n = LL/LS, so that LL = nLS. We also define BSL = ns/(n · nL), which

represents the ratio of the densities (in g/L, say) of short chains to long chains in the system.

It will turn out that the value of BSL has little effect on the tendency for long chains to

cover the spheres, unless it differs from 1 by several orders of magnitude.

We let Slatt be the number of lattice sites on the surface of one sphere. Then the maximum

number of long chains that can adsorb onto the surface is Slatt/LL, which we call a. For

simplicity, we assume that a is an integer.

We write Ej for the set of all configurations (of nL long chains and nS short chains) that

have exactly j LL-mers adsorbed onto the surface. The possible values of j are the integers

from 0 to a. For each configuration in Ej, it must be true that:

(i) the number of LL-mers in solution is nL − j;

(ii) the number of LS-mers adsorbed onto the surface is n(a− j); and

(iii) the number of LS-mers in solution is nS − n(a− j).

The full space of configurations in our model is ∪aj=0 Ej, which we call E .

We also assume that there are many more long chains and many more long chains in

the system than are need to cover the surface; i.e. we assume that nL and nS/n are each

significantly larger than a. This does not conflict with the assumption that both sizes of

chains form a dilute solution.

Since the energy of every configuration of E is exactly the same, the calculation of prob-

abilities of events is equivalent to counting the configurations. In particular, writing |A| for
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the number of configurations in a set A, we have

Probability that j long polymers are adsorbed =
|Ej|
|E|

, (j = 0, 1, . . . , a).

Thus, to find the most likely number of LL-mers (and LS-mers) to be adsorbed onto the

sphere, we need to find which of the sets Ej is largest.

In order to better comprehend the model we provide an illustration Figure 1 with much

simpler values than what would be considered standard chain lengths in polymer science.

We let each lattice point of area of one mer of PAA, be a square on the grid. Suppose a short

chain is 25-mers and long chain is 75-mers and the colloid surface has 2025 available single

mer sites. In the parameters of this model, we have Slatt = 2025, LS = 25, LL = 75,n = 3,

and a = 2025/75 = 27. For simplicity, the figure shows each short chain filling a 5×5 square

of lattice points, and each long chain fills three adjacent 5× 5 squares. We can think of the

model initially with the colloid surface sites fully covered exclusively by short chains, which

in this concrete example requires 81 short chains (a). We then remove 3 short chains and

replace them with our first long chain (b). We can think of continuing this process of adding

more and more long chains in place of the equivalent number of mers in short chains (c,d,e)

until we reach the maximum number of long chains (f).
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(a) E0: 0 long & 81 short
chains on Colloid Surface

(b) E1: 1 long & 78 short
chains on Colloid Surface

(c) E2: 2 long & 75 short
chains on Colloid Surface

(d) E3: 3 long & 72 short
chains on Colloid Surface

(e) E4: 4 long & 69 short
chains on Colloid Surface

(f) E27: 27 long & 0 short
chains on Colloid Surface

Figure 1: Schematic of configurations in Ej for j = 0, 1, 2, 3, 4, 27, with j long chains and
81− 3j short chains adsorbed onto the colloid surface. Each S represents a 5× 5 square of
lattice points covered by one short chain; similarly, three contiguous L’s are covered by one
long chain.

In the Main Paper, we found that the number of configurations in Ej is

|Ej| =
ΨnL−j
L

(nL − j)!
Ψ
nS−n(a−j)
S

(nS − n(a− j))!
G(j) (1)
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where

ΨL = VlattA3(LL)γ3−1µLL3 , ΨS = VlattA3LSγ3−1µLS3 , (2)

and G(j) is the number of ways to cover the surface with j LL-mers and n(a− j) LS-mers.

(Here A3, γ3, and µ3 are constants related to self-avoiding walks.) Computing G(j) is a hard

combinatorial problem, so we use a mean-field approximation of the Flory-Huggins type,

which we now explain (see also Section XII.1 of P.J. Flory, Principles of Polymer Chemistry,

Cornell University Press, 1953).

For a particular choice of j, we want to know the number of ways to place j LL-mers

and a(n− j) LS-mers on the surface, without overlapping. We place one polymer at a time,

starting with the long ones. Let w̃k be the number of ways to place the kth LL-mer on

the surface, given that (k − 1) LL-mers have already been placed. To begin with, there

are aLL − (k − 1)LL available sites for the first monomer. Recall that q is the number of

neighbors of each site in the surface lattice. In the absence of other polymers, there would

be q choices for the second monomer in the chain, and q − 1 choices for each monomer

after that (here we are using the non-reversed walk model of a polymer instead of the

fully self-avoiding model). But the number of choices should on average be reduced by

the fraction of the surface that has already been covered. Thus, when we are trying to

place the second monomer of our chain, there are aLL − (k − 1)LL − 1 unoccupied sites,

so each site has probability [aLL − (k − 1)LL − 1]/[aLL] of being available. Thus there are

q[aLL − (k − 1)LL − 1]/[aLL] choices for the second monomer. Similarly, after i monomers

of the current chain have been placed (i ≥ 2), the fraction of the surface that has not been

covered is [aLL− (k−1)LL− i]/[aLL], so there are (q−1)[aLL− (k−1)LL− i]/[aLL] choices
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for the (i+ 1)th monomer in this chain. We conclude that

w̃k = [aLL − (k − 1)LL] × q

(
aLL − (k − 1)LL − 1

aLL

)
×

LL−1∏
i=2

(q − 1)

(
aLL − (k − 1)LL − i

aLL

)
=

[aLL − (k − 1)LL]!

[aLL − kLL]!
q

(q − 1)LL−2

(aLL)LL−1

=
[aLL − (k − 1)LL]!

[aLL − kLL]!
aLL

q

(q − 1)2

(
q − 1

aLL

)LL
. (3)

Similarly, let ũ` be the number of ways to place the `th LS-mer on the surface, given that

` − 1 LS-mers (or a total of (` − 1)LS monomers) have already been placed. The same

argument as for w̃k gives

ũ` =
[anLS − (`− 1)LS]!

[anLS − `LS]!
q

(q − 1)LS−2

(anLS)LS−1

=
[anLS − (`− 1)LS]!

[anLS − `LS]!
anLS

q

(q − 1)2

(
q − 1

anLS

)LS
. (4)

We can now express the combinatorial quantity G(j) in Equation (1) as

G(j) =
w̃1w̃2 · · · w̃j

j!

ũnj+1ũnj+2 · · · ũan
(n(a− j))!

. (5)

To determine which value of j maximizes |Ej|, we look at ratios of consecutive terms,
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using Equations (1–5):

|Ej+1|
|Ej|

=

(
Ψ

nL−j−1

L

(nL−j−1)!

)
·
(

Ψ
nS−n(a−j−1)

S

(nS−n(a−j−1))!

)
(

Ψ
nL−j

L

(nL−j)!

)
·
(

Ψ
nS−n(a−j)

S

(nS−n(a−j))!

) w̃j+1

ũnj+1 · · · ũn(j+1)

× j! (na− nj)!
(j + 1)! (na− nj − n)!

=
Ψn
S

ΨL

w̃j+1

ũnj+1 · · · ũn(j+1)

(
nL − j
j + 1

)
× (na− nj) · · · (na− nj − n+ 1)

(nS − na+ nj + 1) · · · (nS − na+ nj + n)
. (6)

From now on, we replace LL by nLS. By Equation (2), we have

Ψn
S

ΨL

=
(VlattA3 Lγ3−1

S )n−1

nγ3−1
. (7)

From Equations (3) and (4), we find

w̃j+1

ũnj+1 · · · ũn(j+1)

=

(
(q − 1)2

qanLS

)n−1

×
(anLS−jnLS)!

(anLS−(j+1)nLS)!∏n−1
`=0

(anLS−(nj+`)LS)!
(anLS−(nj+`+1)LS)!

=

(
(q − 1)2

qanLS

)n−1

× 1. (8)

Next we use the approximation (c+ 1)(c+ 2) · · · (c+m) ≈ (c+ m
2

)m (essentially, replacing

the geometric mean by the arithmetic mean) to obtain

(na− nj) · · · (na− nj − n+ 1)

(nS − na+ nj + 1) · · · (nS − na+ nj + n)
≈

[na− (j + 1
2
)n]n

[nS − na+ nj + n
2
]n
. (9)

Now, putting Equations (7–9) back into (6), we obtain

|Ej+1|
|Ej|

≈ [h(j)]n
n

Knγ3−1

(
nL − j
j + 1

)
, where (10)

K =
Vlatt
aLS

A3Lγ3−1
S (q − 1)2

q
and h(j) =

K(a− j − 1
2
)

nS − n(a− j − 1
2
)
.
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For now, we ignore the sub-exponential terms in (10), and assume |Ej+1|/|Ej| is well approx-

imated by h(j)n; the validity of this step is checked at the end of this subsection. Let j∗ be

the smallest value of j for which h(j) is less than 1. As explained in the main paper, the

quantity |Ej| is maximized at j = j∗, and j∗ satisfies h(j∗) ≈ 1, which can be rewritten as

a− j∗ − 1

2
≈ nS

K + n
. (11)

We observe that K � n; indeed, Vlatt/aLSn = Vlatt/Slatt � 1. Thus we can replace K + n

by K in the above, and omit the small term 1
2
, resulting in the approximation

1− j∗

a
≈
(
nS LS
Vlatt

) (
q

A3Lγ3−1
S (q − 1)2

)
. (12)

Observe that the ratio nSLS/Vlatt gives the concentration of monomers in solution corre-

sponding to those appearing on the short chains only. The quantity in the second set of

parentheses in Equation (12) is not large, since q < (q − 1)2 and γ3 > 1. Assuming that

the solution is fairly dilute, then we see that the right (and hence the left) side of (12) is

small. That is, the value of j∗ is close to a. See the Main Paper for further discussion and

interpretation of Equation (12).

Notice that nL does not appear in Equation (12). This is because in the approximation

(10) for |Ej+1|/|Ej|, the variable nL only appears outside the term that is exponential in

n, and thus was omitted from our calculation. To check whether this omission could be

significant, we return to the full approximation (10) and ask whether the true maximizing j

could be significantly less than our j∗. To do this, we consider (10) at j = j∗ − 1.

Since h′(j) = −KnS/[nS − n(a−j−1
2
)]2, equation (11) leads to

h′(j∗) ≈ − (K + n)2

KnS
≈ − K

nS

(using K � n for the last step), which approximately equals the reciprocal of (11). The
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values from Table 1 in the main paper produce K/nS = 1.0 × 107/5562 = 1.8 × 103. More

generally, from our argument following (12) that a− j∗ � a, one finds that |h′(j∗)| � 1/a;

for moderate values of a (order 101 in our case), this indicates that

h(j∗ − 1) ≈ h(j∗)− h′(j∗) ≈ 1 +
K

nS

which is significantly greater than 1. Next, since j∗ is close to a and since nL is significantly

larger than a, and recalling BSL = nS/(n · nL), equation (10) at j = j∗ − 1 becomes

|Ej∗|
|Ej∗−1|

≈
(

1 +
K

nS

)n
n

Knγ3−1

(nL
a

)
≈
(

1 +
K

nS

)n
nS
K
· 1

BSL a nγ3−1

With K/nS and n both being large, we see that the only way that the above expression can

be less than 1 is if BSL is exponentially large in n. Hence, unless the density of short chains

is orders of magnitude greater than the density of long chains, we conclude that |Ej∗|/|Ej∗−1|

is much bigger than 1, i.e. that |Ej∗| � |Ej∗−1|, which confirms that j∗ as initially calculated

is indeed a valid approximation for the most likely number of long chains adsorbed.

1.2 Interpretations about |Ej| from ratio
|Ej+1|
|Ej |

Figure 2 graphically portrays that as one increases the number of adsorbed long chains in a

scenario of full surface coverage of the colloid, the ratio of probabilities decreases and eventu-

ally crosses the threshold of being equal to one (
|Ej+1|
|Ej | = 1). This threshold is representative

of two consecutive configurations being equal in value and thus the the divided differences of

|Ej+1| and |Ej| being equal to zero for j = j∗. The fact that ratio is decreasing tells us that

the differences |Ej+1| − |Ej| are positive when j < j∗ and are negative when j > j∗. These

statements indicate the existence of a maximal critical point at j∗.
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Figure 2

1.3 Derivation of Boltzmann Entropy from Ratio Approximation

Initially, we take the natural logarithm of our ratio
|Ej+1|
|Ej | . Then we expand the expression

using known logarithmic properties and multiply the whole expression by the Boltzmann

Constant.

kB · log

(
|Ej+1|
|Ej|

)
= kB · (log |Ej+1| − log |Ej|)

= (kB · log |Ej+1|)− (kB · log |Ej|)
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This is evidently just the difference of Boltzman entropies of j and j + 1,

= Sj+1 − Sj = ∆Sj→j+1 .
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