Supporting Information

Local structure of a highly concentrated NaClO₄ aqueous solution-type electrolyte for sodium ion batteries.

Ryo Sakamoto¹, Maho Yamashita², Kosuke Nakamoto³, Yongpuan Zhou⁴, Nobuko Yoshimoto², Kenta Fujii², Toshio Yamaguchi⁵, Ayuko Kitajou^{2, 6, *}, Shigeto Okada^{3, 6, *}

¹Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga 816-8580, Japan

²Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 2-16-1 Tokiwadai, Yamaguchi Ube, 755-8611, Japan

³Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-koen, Kasuga 816-8580, Japan

⁴Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining 810008, China

⁵Department of Chemistry, Faculty of Science, Fukuoka University, 8-19-1 Nanakuma, Jonan, Fukuoka 814-0180, Japan

⁶Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto, 615-8245, Japan

*Corresponding authors

Concentration	Water	Na ⁺ cations	ClO ₄ -	Density /	Box size
(m)	molecules		anions	atoms Å-3	length (Å)
1	1000	18	18	0.09877	31.571
5	1000	90	90	0.09535	33.361
10	1000	180	180	0.09177	35.426
13	1000	234	234	0.08991	36.589
17	1000	306	306	0.08792	38.030

Table S1. Setup details for the EPSR simulation boxes.

Table S2. Potential parameter values used in EPSR modeling for NaClO₄ solution.

	$O_w^{[1]}$	$H^{[1]}$	Na ^[1]	Cl ^[2]	$O_{Cl}^{[2]}$
ε (kJ mol ⁻¹)	0.65	0.00	0.514	0.566	0.65
σ (Å)	3.16	0.00	2.29	4.19	3.16
mass	16	2.00	23	35.45	16
charge	-0.8476	0.4238	1.00	1.88	-0.72

Fig. S1 Viscosity and electric conductivity of the NaClO₄ aq. electrolytes at various concentrations

Fig. S2 The fraction of each component (FA ClO_4^- , SSIP ClO_4^- and $CIP ClO_4^-$) in aqueous electrolyte with each NaClO₄ salt concentration (1, 3, 5, 7, 10, 13 and 17 m)

Fig. S3 The calculated average coordination number of ClO_4^- ions

Fig. S4 Illustration of the local structure around an Na^+ ion in 17 m $NaClO_4$ aqueous electrolyte.

Fig. S5 SEM images of (a) pristine and cycled NTP electrode with (b) 1 m and (c) 17 m $NaClO_4$ aq. electrolytes.

Fig. S6 C 1s XPS peaks of NTP electrodes before and after 5 cycles with 17 m NaClO₄ aq. electrolyte.

Fig. S7 Nyquist plots of NTP with 1, 7, 10 and 17 m NaClO₄ aq. electrolyte. Insets are the magnified spectra and the equivalent circuit.

Fig. S8 The calculated R_s and R_{ct} from Nyquist plots in each NaClO₄ aq. electrolytes.

Supplementary References

- 1. R. Mancinelli, A. Botti, F. Bruni, M. A. Ricci, and A. K. Soper, *J. Phys. Chem. B*, 2007, **111**, 13570.
- 2. D. T. Bowron, E. C. Beret, E. Martin-Zamora, A. K. Soper, and E. S. Marcos, *J. Am. Chem. Soc.*, 2012, **134**, 962.
- 3. S. Ye, Z. Li, T. Song, D. Cheng, Q. Xu, H. Liu, and Y. Wang, *RSC Adv.*, 2017, 7, 56743.
- 4. Y.-C. Lin, Y.-Y. Chen, B.-Y. Yu, W.-C. Lin, C.-H. Kuo, and J.-J. Shyue, *Analyst*, 2009, **134**, 945.
- 5. X.L. Zhu, S.B. Liu, B.Y. Man, C.Q. Xie, D.P. Chen, D.Q. Wang, T.C. Ye, and M. Liu, *Appl. Surf. Sci.*, 2007, **253**, 3122.