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1. Results of Monte Carlo simulation for the system with mobile nanoparticles

We have performed more Monte Carlo (MC) simulations for the polymer 

nanocomposite (PNC) system with mobile nanoparticles (NPs). Three kinds of NPs, 

including repulsive NPs (RNPs) and attractive NPs (ANPs) of interaction strengths εpn = 

1.0 and 2.5, are considered in these simulations. The diameter and concentration of NPs 

are set as n = 5 and cn = 0.125, respectively, and the length of polymer chain is fixed as 

N = 64. It was pointed out that the diffusion rate of NPs is smaller than that of polymers 

due to the large mass of NPs.1 To mimic the slow diffusion of NPs, the mobile 

probability, pm, is set as 1 for polymer monomers while that of NPs is set much smaller 

than 1 in the MC simulation. When pm = 0.00015, we find the diffusion rate of NP is 

about 1/40 of polymer in dilute solution, in accordance with the experimental report.1 

Fig. S1 shows the variation of the polymer diffusion coefficient D and the mean-square 

radius of gyration <Rg
2> of polymer chains with the concentration of polymers cp in 

different systems. These results are similar to those of immobile NPs present in Fig. 1, 

although the values of D and <Rg
2> are changed due to the mobile of NPs and the 

minimum D is hard to be determined since the D values are very small at small cp.
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Fig. S1 Variation of the diffusion coefficient D (a) and the mean-square radius of 

gyration <Rg
2> (b) of polymer chains with the concentration of polymers cp for three 

different systems with mobile NPs. 

For the system with orderly distributed immobile NPs, we can observe NP-polymer-

NP bridges since we find a relatively large probability for one polymer chain contacting 

with two or more NPs (Fig. 2 for strong attraction strength εpn = 2.5). If NPs are allowed 

to move, the bridging effect could cause the bridge narrow.2 Fig. S2 shows the evolution 

of NP-NP distance, d, for a typical case (initial d = 10). We find the two NPs are pulled 

by the polymer chain and d decreases from initial 10 to about 6, the latter equals to the 

plus of NP’s and polymer monomer’s diameter.  The snapshots of NP-polymer-NP 

bridges with d = 10 and d = 6 are presented in the inset of Fig. S2. 

Fig. S2 Evolution of NP-NP distance d for the NP-polymer-NP bridge if NPs are allowed 

to move in polymer dilute solution. n = 5 and εpn = 2.5.
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2. Results of molecules dynamics simulation using LAMMPS 

Molecular dynamics (MD) simulations are performed using Large-scale 

Atomic/Molecular Massively Parallel Simulator (LAMMPS) software.3 The system is the 

same as that used in the dynamic MC simulation. However, the interactions adopted in 

the MD simulation are different slightly from MC. 

In the LAMMPS simulation, the interaction between two monomers is purely 

repulsive which is described by a truncated and shifted WCA potential4
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where εpp is the interaction strength. For bonded monomers, the finite extensible 

nonlinear elastic (FENE) potential5
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is further considered. Here b is the bond length. The parameters adopted are: K = 

30PP/σ2, R0 = 1.5σ. The equilibrium bond length <b> is about 0.97σ. 

In this work the most important interaction is that between polymer and NP which is 

described by a modified Lennard-Jones (LJ) potential of the form6 
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with  and εpn the interaction strength between polymer and NP. We set εpn = 
2

n 
s

εpp and rc  s = σ for repulsive NPs (RNPs), whereas we set εpn = 2.5εpp and rc  s = 2.5σ 

for attractive NPs (ANPs). The potential Vpn is shifted to 0 at rc by setting 

. As NPs are immobile in our system, the interactions 
































6

c

12

c
pn4

sr
σ

sr
σεVc

between two NPs are trivial. n = 5 is used in simulations.

The random motion of the polymer chains is described by Langevin equation7,8
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Here, the first term of the right-hand side is the conservative forces in the system, the 

second term is the viscous damping force with Γi the frictional coefficient, and the last 

term Fr is the random force. 

All physical quantities are expressed in the standard LJ units. The length and energy 

are measured, respectively, in the units of σ and pp, i.e., we set σ = 1 and pp = 1. The 

mass of polymer monomer is set as m = 1, so that the reduced unit for time is 

. Simulations are carried out at temperature kBT = 1 with kB the Boltzmann’s 



2

0
m



constantan and T the temperature. The MD simulations are performed at constant number 

of particles, volume and temperature (NVT) with a Langevin thermostat with damping 

constant   = 0.10
1. 

The variation of the diffusion coefficient D and mean-square radius of gyration 

<Rg
2> with the concentration of polymers cp are plotted in Fig. S3 for systems with RNPs 

and ANPs at εpn = 2.5. The concentration of NPs is set as cn = 0.125. We find the results 

are similar to those of MC simulations shown in Fig. 1. The minima of D and <Rg
2> are 

both located at cp = 0.064, the same as that found in the MC simulation. We have also 

calculated the variation of D and <Rg
2> with ANP concentration for the cp = 0.064 case. 

The MD results presented in Fig. S4 are generally in agreement with the MC results (Fig. 

7 in the revised manuscript). That is, the results obtained from MC simulation can be 

verified by MD simulation. 
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Fig. S3 MD results of the variation of the diffusion coefficient D (a) and mean-square 

radius of gyration <Rg
2> (b) of polymer chains with the concentration of polymers cp in 

systems with RNPs and ANPs at εpn = 2.5.
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Fig. S4 MD results of D/D0 (a) and <Rg
2>/<Rg

2>0 (b) of polymer chains with the 

concentration of NP cn in systems with immobile ANPs. 
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