Supporting Information

## Na<sub>2</sub>CO<sub>3</sub>-modified CaO-based CO<sub>2</sub> Sorbents: The Effects of Structure and Morphology on CO<sub>2</sub> Uptake

Alexey Kurlov,<sup>a</sup> Agnieszka M. Kierzkowska,<sup>a</sup> Thomas Huthwelker,<sup>b</sup> Paula M. Abdala,<sup>\*a</sup> and Christoph R. Müller<sup>\*a</sup>

<sup>a</sup> ETH Zürich, Laboratory of Energy Science and Engineering, Leonhardstrasse 21, CH 8092 Zürich, Switzerland <sup>b</sup> PSI, SLS, 5232 Villigen, Switzerland

e-mail:\* <a href="mailto:abdalap@ethz.ch">abdalap@ethz.ch</a>; <a href="mailto:muelchri@ethz.ch">muelchri@ethz.ch</a>; <a href="mailto:muelchri@ethz.ch"@ethz.ch"</a>; <a href="mailto:muelchri@ethz">

## List of Figures

| Figure S1. SEM images of the CaCO <sub>3</sub> and Na <sub>2</sub> CO <sub>3</sub> precursors                                              | 3 |
|--------------------------------------------------------------------------------------------------------------------------------------------|---|
| Figure S2. XRD patterns of as prepared CaO-based sorbents                                                                                  | 3 |
| Figure S3. SEM images of the as prepared sorbents, i.e. Ca/0Na, Ca/1Na, Ca/3Na, Ca/6Na, Ca/10Na, and                                       | 1 |
| Ca/20Na                                                                                                                                    | 1 |
| Figure S4. SEM/EDX elemental mapping of Ca/3Na.                                                                                            | 5 |
| Figure S5. BET surface area and BJH pore volume of CaO-based sorbents in the as-prepared (prior to the                                     | Э |
| initial calcination) and calcined states as a function of the Na <sub>2</sub> CO <sub>3</sub> content                                      | 5 |
| Figure S6. CO2 uptake profile of Ca/1Na, Ca/3Na, Ca/10Na, and Ca/20Na revealing a weight difference                                        | , |
| $\Delta m$ , when the sorbent is calcined in pure N <sub>2</sub> or a CO <sub>2</sub> -rich atmosphere                                     | 5 |
| Figure S7. TPC profiles of CaCO <sub>3</sub> , Na <sub>2</sub> CO <sub>3</sub> , Ca/1Na and Ca/20Na                                        | 7 |
| Figure S8. Increase in particle size of CaCO3 (red) and Ca/1Na (black) during the initial calcination step                                 | 3 |
| in N <sub>2</sub> as a function of the calcination temperature                                                                             | 7 |
| Figure S9. SEM images of CaCO3 annealed at 750 °C in CO2 for a) 0 h, b) 1 h, c) 5 h and d) 12 h 8                                          | 3 |
| Figure S10. Surface area and pore volume of CaCO <sub>3</sub> in the as-prepared (prior to the initial calcination                         | ) |
| and calcined states as a function of sintering time                                                                                        | 3 |
| Figure S11. Cyclic CO <sub>2</sub> uptake of ball-milled CaCO <sub>3</sub> that has been exposed prior to CO <sub>2</sub> uptake test to   | ) |
| sintering conditions for varying durations (sintering temperature 750 °C in pure CO2 atmosphere) unde                                      | r |
| realistic CO2 capture conditions (calcination at 900 °C in a CO2-rich atmosphere; carbonation at 650 °C                                    | 2 |
| in 20 vol.% $CO_2/N_2$ ). Abbreviations 1 h, 5 h and 12 h in the legend correspond to the samples which were                               | Э |
| preliminary annealed at 750 °C in CO2 for 1 h, 5 h and 12 h, respectively (as described in Figures Se                                      | 5 |
| and S7)                                                                                                                                    | ) |
| Figure S12. SEM images and EDX elemental mapping of Ca/3Na after the 10 <sup>th</sup> carbonation step                                     | ) |
| Figure S13. Ca K-edge spectra of Ca/1Na and Ca/20Na at different states, i.e. as prepared, after the initia                                | 1 |
| calcination (_calc.) and after the 10 <sup>th</sup> carbonation step (_10c_carb.) compared to the reference spectra o                      | f |
| CaO and CaCO <sub>3</sub> 10                                                                                                               | ) |
| Figure S14. Na K-edge spectra of Na <sub>2</sub> CO <sub>3</sub> -modifed CaO after initial calcination (800 °C, N <sub>2</sub> ) compared | ł |
| to the reference spectra of NaCO <sub>3</sub> 1                                                                                            | l |
| Figure S15. XRD pattern of the Na <sub>2</sub> Ca(CO <sub>3</sub> ) <sub>2</sub> reference and the simulated pattern according to the ICSE | ) |
| database                                                                                                                                   | l |
| Figure S16. TGA data when the reference Na <sub>2</sub> Ca(CO <sub>3</sub> ) <sub>2</sub> is exposed to cyclic carbonation calcination     | 1 |
| conditions. Na <sub>2</sub> Ca(CO <sub>3</sub> ) <sub>2</sub> does not decompose under the carbonation and calcination conditions studied  | 1 |
| (CO <sub>2</sub> , 650–900 °C)                                                                                                             | 2 |
|                                                                                                                                            |   |

## List of Tables

| Table S1. Theoretical and ICP-determined Na <sub>2</sub> CO <sub>3</sub> contents in the prepared sorbents | . 12 |
|------------------------------------------------------------------------------------------------------------|------|
|------------------------------------------------------------------------------------------------------------|------|



Figure S1. SEM images of the CaCO<sub>3</sub> and Na<sub>2</sub>CO<sub>3</sub> precursors.



Figure S2. XRD patterns of as prepared CaO-based sorbents.



Figure S3. SEM images of the as prepared sorbents, i.e. Ca/ONa, Ca/1Na, Ca/3Na, Ca/6Na, Ca/10Na, and Ca/20Na.



Figure S4. SEM/EDX elemental mapping of Ca/3Na.



**Figure S5.** BET surface area and BJH pore volume of CaO-based sorbents in the as-prepared (prior to the initial calcination) and calcined states as a function of the Na<sub>2</sub>CO<sub>3</sub> content.



**Figure S6.**  $CO_2$  uptake profile of Ca/1Na, Ca/3Na, Ca/10Na, and Ca/20Na revealing a weight difference,  $\Delta m$ , when the sorbent is calcined in pure N<sub>2</sub> or a CO<sub>2</sub>-rich atmosphere.



**Figure S7.** TPC profiles of CaCO<sub>3</sub>, Na<sub>2</sub>CO<sub>3</sub>, Ca/1Na and Ca/20Na.



**Figure S8.** Increase in particle size of  $CaCO_3$  (red) and Ca/1Na (black) during the initial calcination step in  $N_2$  as a function of the calcination temperature.



Figure S9. SEM images of CaCO<sub>3</sub> annealed at 750 °C in CO<sub>2</sub> for a) 0 h, b) 1 h, c) 5 h and d) 12 h.



**Figure S10.** Surface area and pore volume of CaCO<sub>3</sub> in the as-prepared (prior to the initial calcination) and calcined states as a function of sintering time.



**Figure S11.** Cyclic CO<sub>2</sub> uptake of ball-milled CaCO<sub>3</sub> that has been exposed prior to CO<sub>2</sub> uptake test to sintering conditions for varying durations (sintering temperature 750 °C in pure CO<sub>2</sub> atmosphere) under realistic CO<sub>2</sub> capture conditions (calcination at 900 °C in a CO<sub>2</sub>-rich atmosphere; carbonation at 650 °C in 20 vol.% CO<sub>2</sub>/N<sub>2</sub>). Abbreviations 1 h, 5 h and 12 h in the legend correspond to the samples which have been annealed at 750 °C in CO<sub>2</sub> for 1 h, 5 h and 12 h, respectively (as described in Figures S9 and S10).



Figure S12. SEM images and EDX elemental mapping of Ca/3Na after the 10<sup>th</sup> carbonation step.



**Figure S13.** Ca K-edge spectra of Ca/1Na and Ca/20Na at different states, i.e. as prepared, after the initial calcination (\_calc.) and after the  $10^{th}$  carbonation step (\_10c\_carb.) compared to the reference spectra of CaO and CaCO<sub>3</sub>.



**Figure S14.** Na K-edge spectra of Na<sub>2</sub>CO<sub>3</sub>-modifed CaO after initial calcination (800 °C, N<sub>2</sub>) compared to the reference spectra of NaCO<sub>3</sub>.



**Figure S15.** XRD pattern of the Na<sub>2</sub>Ca(CO<sub>3</sub>)<sub>2</sub> reference and the simulated pattern according to the ICSD database, crystal structure reported in *Cryst. Growth Des.* **2016**, 16, 1893–1902 (P2<sub>1</sub>ca, a = 10.0713 Å, b = 8.7220 Å, c = 12.2460 Å).



**Figure S16.** TGA data when the reference  $Na_2Ca(CO_3)_2$  is exposed to cyclic carbonation calcination conditions.  $Na_2Ca(CO_3)_2$  does not decompose under the carbonation and calcination conditions studied ( $CO_2$ , 650–900 °C).

| Sample  | Nominal Na <sub>2</sub> CO <sub>3</sub> content<br>wt.% | Na/Ca ratio | Determined Na <sub>2</sub> CO <sub>3</sub><br>content<br>wt.% |
|---------|---------------------------------------------------------|-------------|---------------------------------------------------------------|
| Ca/1Na  | 1                                                       | 0.009       | 0.8                                                           |
| Ca/3Na  | 3                                                       | 0.057       | 5                                                             |
| Ca/10Na | 10                                                      | 0.130       | 10.7                                                          |
| Ca/20Na | 20                                                      | 0.301       | 21.7                                                          |