Electronic Supplementary Material

## A quantum biochemistry investigation of the protein-protein interactions for the description of allosteric modulation on biomass-degrading chimera

SRB Silva<sup>a,b,#</sup>, JX Lima Neto<sup>c,</sup>, CA Fuzo<sup>d</sup>, UL Fulco<sup>c</sup> and DS Vieira<sup>a</sup>

<sup>a</sup> Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil

<sup>b</sup> Instituto do Cérebro, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil

<sup>c</sup> Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil

<sup>d</sup> Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil

<sup>#</sup> Corresponding Author

| Secondary | Amino acids numbering |                     |
|-----------|-----------------------|---------------------|
| Structure | XyI <sub>bound</sub>  | XyI <sub>free</sub> |
| B2        | 276 to 282            | 276 to 282          |
| A2        | 286 to 291            | 286 to 292          |
| A3        | 297 to 302            | 296 to 302          |
| B3        | 307 to 313            | 306 to 313          |
| A5        | 322 to 331            | 321 to 330          |
| B5        | 334 to 344            | 333 to 344          |
| B6        | 348 to 356            | 348 to 353          |
| B9        | 364 to 371            | 364 to 371          |
| B8        | 374 to 386            | 374 to 382          |
| B7        | 394 to 404            | 397 to 402          |
| A6        | 411 to 415            | 413 to 416          |
| H1        | 417 to 427            | 417 to 427          |
| B4        | 434 to 445            | 434 to 447          |
| A4        | 449 to 455            | 450 to 454          |

Table S1: Amino-acids numbering of xylanase domain with the corresponding secondary structure for  $Xyl_{bound}$  and  $Xyl_{free}$  system

Table S2: Amino-acids numbering of XBP domain with the corresponding secondary structure for  $XyI_{bound}$  and  $XyI_{free}$  system

| Secondary | Amino acids numbering |                     |
|-----------|-----------------------|---------------------|
| Structure | XyI <sub>bound</sub>  | Xyl <sub>free</sub> |
| B1        | 03 to 09              | 03 to 09            |
| H1        | 15 to 31              | 19 to 31            |
| B2        | 33 to 39              | 33 to 39            |
| H2        | 44 to 57              | 44 to 57            |
| B3        | 61 to 64              | 61 to 64            |
| H3        | 72 to 82              | 72 to 82            |
| B4        | 85 to 89              | 85 to 89            |
| B5        | 100 to 102            | 100 to 102          |
| H4        | 106 to 117            | 106 to 120          |
| B6        | 126 to 129            | 125 to 129          |
| H5        | 136 to 148            | 136 to 149          |
| B7        | 159 to 164            | 159 to 161          |
| H6        | 171 to 181            | 171 to 184          |
| B8        | 189 to 194            | 191 to 194          |
| H7        | 197 to 206            | 197 to 210          |
| B9        | 212 to 221            | 217 to 221          |
| H8        | 225 to 230            | 225 to 233          |
| B10       | 238 to 240            | 238 to 240          |
| H9        | 244 to 259            | 244 to 258          |
| H10       | 465 to 470            | 463 to 469          |

| Interaction naire                        | Interactio           | n Energy            | Δισ        |
|------------------------------------------|----------------------|---------------------|------------|
| interaction pairs                        | Xyl <sub>bound</sub> | Xyl <sub>free</sub> | (kcal/mol) |
| A272 <sub>Xyl</sub> -D105 <sub>XBP</sub> | -6.65                | -0.96               | -5.69      |
| S273 <sub>Xyl</sub> -D105 <sub>XBP</sub> | -5.55                | -0.09               | -5.46      |
| S273 <sub>Xyl</sub> -E107 <sub>XBP</sub> | -8.57                | 0.08                | -8.64      |
| T274 <sub>Xyl</sub> -K108 <sub>XBP</sub> | -3.36                | -0.55               | -2.80      |
| S293 <sub>Xyl</sub> -K108 <sub>XBP</sub> | -4.43                | -0.14               | -4.29      |
| S293 <sub>Xyl</sub> -E111 <sub>XBP</sub> | -11.12               | -8.26               | -2.86      |
| G294 <sub>Xyl</sub> -K108 <sub>XBP</sub> | -3.18                | -0.10               | -3.08      |
| N296 <sub>Xyl</sub> -K115 <sub>XBP</sub> | -7.31                | -0.11               | -7.20      |
| N296 <sub>Xyl</sub> -D119 <sub>XBP</sub> | -3.95                | -0.51               | -3.45      |
| S298 <sub>Xyl</sub> -D119 <sub>XBP</sub> | -5.59                | -0.65               | -4.94      |
| G316 <sub>Xyl</sub> -N271 <sub>XBP</sub> | -3.39                | -0.11               | -3.27      |
| S317 <sub>Xyl</sub> -F104 <sub>XBP</sub> | -2.31                | -0.03               | -2.28      |
| D372 <sub>Xyl</sub> -D465 <sub>XBP</sub> | -4.50                | 1.13                | -5.63      |
| D372 <sub>Xyl</sub> -D470 <sub>XBP</sub> | -2.16                | 0.66                | -2.82      |
| G373 <sub>Xyl</sub> -D465 <sub>XBP</sub> | -2.64                | -0.62               | -2.03      |
| R403 <sub>Xyl</sub> -D465 <sub>XBP</sub> | -6.93                | -1.11               | -5.82      |
| N412 <sub>Xyl</sub> -N461 <sub>XBP</sub> | -14.42               | -8.14               | -6.28      |
| N412 <sub>Xyl</sub> -N462 <sub>XBP</sub> | -4.27                | -1.75               | -2.52      |
| T414 <sub>Xyl</sub> -K464 <sub>XBP</sub> | -3.28                | -0.04               | -3.24      |
| T416 <sub>Xyl</sub> -T466 <sub>XBP</sub> | -5.73                | -0.16               | -5.56      |
| N419 <sub>Xyl</sub> -D470 <sub>XBP</sub> | -2.49                | -0.10               | -2.39      |
| N434 <sub>Xyl</sub> -D267 <sub>XBP</sub> | -9.56                | -0.11               | -9.45      |
| W456 <sub>Xyl</sub> -I120 <sub>XBP</sub> | -3.09                | -0.29               | -2.79      |
| W456 <sub>Xyl</sub> -N459 <sub>XBP</sub> | -2.75                | -0.10               | -2.65      |

**Table S3:** Interdomain interaction pair energies that present  $\Delta_{IE}$  < -2.0 kcal/mol for Xyl<sub>bound</sub> and Xyl<sub>free</sub> system

| Interaction pairs                        | Interactio<br>(kcal  | n Energy<br>/mol)   | $\Delta_{IE}$ |
|------------------------------------------|----------------------|---------------------|---------------|
|                                          | Xyl <sub>bound</sub> | XyI <sub>free</sub> | — (kcal/mol)  |
| A272 <sub>Xvl</sub> -F104 <sub>XBP</sub> | 0.81                 | -2.03               | 2.84          |
| A272 <sub>Xvl</sub> -K108 <sub>XBP</sub> | 0.02                 | -2.00               | 2.02          |
| S273 <sub>Xyl</sub> -E111 <sub>XBP</sub> | -0.17                | -5.54               | 5.37          |
| S273 <sub>Xyl</sub> -N271 <sub>XBP</sub> | -0.28                | -6.86               | 6.57          |
| T274 <sub>Xyl</sub> -E111 <sub>XBP</sub> | 0.07                 | -2.25               | 2.32          |
| T274 <sub>Xyl</sub> -N271 <sub>XBP</sub> | -0.03                | -6.61               | 6.59          |
| S293 <sub>Xyl</sub> -D119 <sub>XBP</sub> | 0.03                 | -3.76               | 3.79          |
| T314 <sub>Xyl</sub> -N271 <sub>XBP</sub> | -0.05                | -3.10               | 3.04          |
| T315 <sub>Xyl</sub> -D267 <sub>XBP</sub> | -0.16                | -4.35               | 4.19          |
| G316 <sub>Xyl</sub> -D267 <sub>XBP</sub> | -0.16                | -5.03               | 4.87          |
| F319 <sub>Xyl</sub> -L246 <sub>XBP</sub> | -0.25                | -2.73               | 2.48          |
| F319 <sub>Xyl</sub> -N249 <sub>XBP</sub> | -0.07                | -2.28               | 2.21          |
| R320 <sub>Xyl</sub> -N271 <sub>XBP</sub> | -0.33                | -2.97               | 2.64          |
| T321 <sub>Xyl</sub> -Y241 <sub>XBP</sub> | -0.33                | -4.37               | 4.04          |
| $N323_{Xyl}$ -Y241 <sub>XBP</sub>        | -2.70                | -5.87               | 3.18          |
| $N323_{Xyl}$ -D457 <sub>XBP</sub>        | -0.46                | -4.17               | 3.72          |
| $N323_{Xyl}$ -V458 <sub>XBP</sub>        | 0.14                 | -2.41               | 2.55          |
| $Y324_{Xyl}$ -D457 $_{XBP}$              | -0.13                | -2.66               | 2.53          |
| $N325_{Xyl}$ -D457 <sub>XBP</sub>        | -0.29                | -2.86               | 2.57          |
| $S411_{Xyl}$ -N461 <sub>XBP</sub>        | -0.09                | -3.62               | 3.54          |
| N412 <sub>Xyl</sub> -D457 <sub>XBP</sub> | -0.14                | -5.60               | 5.46          |
| $N412_{Xyl}$ - $N459_{XBP}$              | -0.10                | -6.61               | 6.51          |
| $N412_{Xyl}$ -K460 <sub>XBP</sub>        | -0.11                | -3.55               | 3.44          |
| $N412_{Xyl}$ -D465 $_{XBP}$              | -1.34                | -4.46               | 3.12          |
| A413 <sub>Xyl</sub> -D465 <sub>XBP</sub> | -0.39                | -5.16               | 4.77          |
| T414 <sub>Xyl</sub> -N462 <sub>XBP</sub> | -0.12                | -4.24               | 4.12          |
| T414 <sub>Xvl</sub> -D465 <sub>XBP</sub> | -2.74                | -4.91               | 2.17          |
| T414 <sub>Xvl</sub> -T466 <sub>XBP</sub> | -1.47                | -4.18               | 2.71          |
| T414 <sub>Xyl</sub> -K469 <sub>XBP</sub> | 0.00                 | -5.69               | 5.69          |
| N452 <sub>Xyl</sub> -D119 <sub>XBP</sub> | -4.25                | -6.71               | 2.46          |
| W456 <sub>Xyl</sub> -A116 <sub>XBP</sub> | -0.53                | -4.64               | 4.11          |
| W456 <sub>Xyl</sub> -D119 <sub>XBP</sub> | -0.23                | -2.30               | 2.07          |
| W456 <sub>Xyl</sub> -V240 <sub>XBP</sub> | -0.40                | -4.33               | 3.93          |

**Table S4:** Interdomain interaction pair energies that present  $\Delta_{IE}$  > 2.0 kcal/mol for Xyl<sub>bound</sub> and Xyl<sub>free</sub> system

| Interaction pairs                        | Interaction Energy<br>(kcal/mol) |                     |
|------------------------------------------|----------------------------------|---------------------|
|                                          | Xyl <sub>bound</sub>             | XyI <sub>free</sub> |
| A272 <sub>Xyl</sub> -Y241 <sub>XBP</sub> |                                  | -4.79               |
| V290 <sub>Xyl</sub> -D119 <sub>XBP</sub> |                                  | -3.45               |
| G316 <sub>xyl</sub> -E253 <sub>xBP</sub> |                                  | -4.77               |
| S317 <sub>Xyl</sub> -E253 <sub>XBP</sub> |                                  | -2.40               |
| F319 <sub>Xyl</sub> -T245 <sub>XBP</sub> |                                  | -3.98               |
| R320 <sub>Xyl</sub> -Y241 <sub>XBP</sub> |                                  | -2.01               |
| T321 <sub>Xyl</sub> -D470 <sub>XBP</sub> |                                  | -3.92               |
| D372 <sub>Xyl</sub> -K469 <sub>XBP</sub> |                                  | -10.94              |
| $S418_{Xyl}$ -D470 $_{XBP}$              |                                  | -2.41               |
| N419 <sub>Xyl</sub> -K469 <sub>XBP</sub> |                                  | 2.16                |
| G295 <sub>Xyl</sub> -D105 <sub>XBP</sub> | -5.26                            |                     |
| W313 <sub>Xyl</sub> -D105 <sub>XBP</sub> | -7.24                            |                     |
| $S317_{Xyl}$ - $S103_{XBP}$              | -3.00                            |                     |
| $S317_{Xyl}$ -N271 <sub>XBP</sub>        | -4.17                            |                     |
| $F319_{Xyl}$ - $F100_{XBP}$              | -2.89                            |                     |
| F319 <sub>Xyl</sub> -I102 <sub>XBP</sub> | -3.88                            |                     |
| R320 <sub>xyl</sub> -D105 <sub>xBP</sub> | -6.46                            |                     |
| $T321_{Xyl}$ -F104 <sub>XBP</sub>        | -3.79                            |                     |
| N325 <sub>Xyl</sub> -I120 <sub>XBP</sub> | -2.86                            |                     |
| V328 <sub>Xyl</sub> -D119 <sub>XBP</sub> | -6.40                            |                     |
| R407 <sub>Xyl</sub> -K464 <sub>XBP</sub> | -2.15                            |                     |
| G410 <sub>xyl</sub> -N461 <sub>xBP</sub> | -3.36                            |                     |
| $N412_{Xyl}$ -K464 <sub>XBP</sub>        | -8.46                            |                     |
| $N419_{Xyl}$ -L246 <sub>XBP</sub>        | -2.11                            |                     |
| N419 <sub>Xyl</sub> -N249 <sub>XBP</sub> | -5.47                            |                     |
| N422 <sub>Xyl</sub> -K27 <sub>XBP</sub>  | -4.87                            |                     |
| N422 <sub>xyl</sub> -E253 <sub>xBP</sub> | -9.82                            |                     |
| K425 <sub>xvl</sub> -E253 <sub>xBP</sub> | -3.98                            |                     |
| K425 <sub>Xyl</sub> -E257 <sub>XBP</sub> | -8.63                            |                     |
| N430 <sub>Xyl</sub> -Q262 <sub>XBP</sub> | -4.06                            |                     |
| S433 <sub>Xyl</sub> -Q262 <sub>XBP</sub> | -3.58                            |                     |
| S433 <sub>Xyl</sub> -E263 <sub>XBP</sub> | -2.73                            |                     |
| S433 <sub>xvl</sub> -P264 <sub>xBP</sub> | -10.96                           |                     |

**Table S5:** Interdomain interaction pair energies that present values higher than 2.0 kcal/molor lower -2.0 kcal/mol and are exclusive of Xylvaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevaluevalue</

| $S433_{Xyl}$ -K265 $_{XBP}$              | -3.26  |  |
|------------------------------------------|--------|--|
| $N434_{Xyl}$ -P264 $_{XBP}$              | -2.49  |  |
| $N434_{Xyl}$ -K265 $_{XBP}$              | -10.46 |  |
| $N434_{Xyl}$ -A266 $_{XBP}$              | -3.02  |  |
| W435 <sub>Xyl</sub> -K265 <sub>XBP</sub> | -3.52  |  |
| $W435_{Xyl}$ -A266 <sub>XBP</sub>        | -3.66  |  |



Fig. S1 - (a) Schematic view depicting the 8.0 Å radius around A272 Xyl residue and (b) the selection of some XBP amino acids within the r = 2.5, 6.0, 7.5 and 8.0 Å.



Fig. S2 - (a) Linear regression between the open-close distances, calculated from essential dynamics filtered trajectories according to the Methodology, for XBP and xylanase. Xyl<sub>free</sub> (right) and Xyl<sub>bound</sub> (left) states. The p-values for the linear regression models were < 0.0001. (b) Distances between the center of mass of XBP  $\alpha$ -helixes (H1 to H9) and xylanase domain for Xyl<sub>free</sub> (orange bars) and Xyl<sub>bound</sub> (green bars).



Fig. S3 - (a) Histogram of water molecules frequency into the interfacial region over simulated time with a bin size of 100 ps. (b) Schematic view depicting the interfacial waters molecules for (b) Xyl<sub>free</sub> (orange) and (c) Xyl<sub>bound</sub> (green) states.



Fig. S4 - Supperposing structure of two domains, a) XBP and b) xylanase on the Xyl-XBP chimera for  $Xyl_{bound}$  (green) and  $Xyl_{Free}$  (orange) states.



Fig. S5 - Supperposing structure of the amino acids forming the chimera interface in  $XyI_{bound}$  (green) and  $XyI_{Free}$  (orange) showing their difference in the position.