Supporting Information

Infrared photodissociation spectroscopic investigation on VO⁺ and NbO⁺ hydrolysis Catalyzed by Water Molecules

Ke Xin^a, Yinjuan Chen^a, Luning Zhang^a, Bing Xu^a, Xuefeng Wang^{a,*}, Guanjun Wang^{b,*}

^a School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and

Sustainability Tongji University, 1239 Siping Road, Shanghai, 200092, China

^b Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysts and Innovative

Materials, Fudan University, Shanghai, 200433, China

The Supporting Information includes 14 pages with 27 figures.

Content

VO(H₂O)_nAr⁺

Fig. S1. Geometries of the low-energy isomers of $VO(H_2O)^+$.	S 1
Fig. S2. Geometries of the low-energy isomers of $VO(H_2O)_2^+$.	S 1
Fig. S3. Geometries of the low-energy isomers of VO(H ₂ O)Ar ⁺ .	S 1
Fig. S4. Geometries of the low-energy isomers of VO(H ₂ O) ₂ Ar ⁺ .	S 1
Fig. S5. Geometries of the low-energy isomers of $VO(H_2O)Ar_2^+$.	S2
Fig. S6. The experimental (Exp.) and simulated vibrational spectra of VO(H ₂ O)Ar ⁺ .	S2
Fig. S7. The experimental (Exp.) and simulated vibrational spectra of VO(H ₂ O) ₂ Ar ⁺ .	S3
Fig. S8. The experimental (Exp.) and simulated vibrational spectra of VO(H ₂ O)Ar ₂ ⁺ .	S4
Fig. S9. The experimental (Exp.) and simulated anharmonic / harmonic vibrational spectra of $VO(H_2O)_2Ar^+$.	S4
Fig. S10. Potential energy surfaces for the reactions of $VO^+ + H_2O \rightarrow VO(H_2O)^+$	S 5
Fig. S11. Potential energy surfaces for the reactions of VO ⁺ + 2H ₂ O \rightarrow V(OH) ₂ (H ₂ O) ⁺	S5
$NbO(H_2O)_nAr^+$	
Fig. S12. Geometries of the low-energy isomers of NbO(H ₂ O) ⁺ .	S6
Fig. S13. Geometries of the low-energy isomers of $NbO(H_2O)_2^+$.	S 6
Fig. S14. Geometries of the low-energy isomers of NbO(H ₂ O)Ar ⁺ .	S 6
Fig. S15. Geometries of the low-energy isomers of NbO(H ₂ O) ₂ Ar ⁺ .	S 6
Fig. S16. Geometries of the low-energy isomers of NbO(H ₂ O)Ar ₂ ⁺ .	S7
Fig. S17. Geometries of the low-energy isomers of NbO(H ₂ O) ₂ Ar ₂ ⁺ .	S 7
Fig. S18. The experimental (Exp.) and simulated vibrational spectra of NbO(H ₂ O)Ar ⁺ .	S 8
Fig. S19. The experimental (Exp.) and simulated vibrational spectra of NbO(H ₂ O) ₂ Ar ⁺ .	S9
Fig. S20. The experimental (Exp.) and simulated vibrational spectra of NbO(H ₂ O)Ar ₂ ⁺ .	S10

Fig. S21. The experimental (Exp.) and simulated vibrational spectra of NbO(H ₂ O) ₂ Ar ₂ ⁺ .	S11
$\label{eq:Fig.S22} Fig. S22. \ The experimental (Exp.) \ and \ simulated \ anharmonic \ / \ harmonic \ vibrational \ spectra \ of \ NbO(H_2O) Ar^+.$	S 11
Fig. S23. The experimental (Exp.) and simulated anharmonic/harmonic vibrational spectra of $NbO(H_2O)Ar_2^+$.	S12
Fig. S24. The experimental (Exp.) and simulated anharmonic/harmonic vibrational spectra of $NbO(H_2O)_2Ar^+$.	S12
$\label{eq:Fig.S25} Fig. S25. \ The experimental (Exp.) \ and \ simulated \ anharmonic/harmonic \ vibrational \ spectra \ of \ NbO(H_2O)_2 Ar_2^+.$	S13
Fig. S26. Potential energy surfaces for the reactions of NbO ⁺ + H ₂ O \rightarrow NbO(H ₂ O) ⁺	S13

Fig. S27. Potential energy surfaces for the reactions of NbO⁺ + $2H_2O \rightarrow HNb(OH)_3^+$ S14

Fig. S1. Optimized structures of the minimum-energy isomers of $VO(H_2O)^+$. The relative energies (with ZPE correction) are given in kcal/mol.

Fig. S2. Optimized structures of the minimum-energy isomers of $VO(H_2O)_2^+$. The relative energies (with ZPE correction) are given in kcal/mol.

Fig. S3. Optimized structures of the minimum-energy isomers of $VO(H_2O)Ar^+$. The relative energies (with ZPE correction) are given in kcal/mol.

Fig. S4. Optimized structures of the minimum-energy isomers of $VO(H_2O)_2Ar^+$. The relative energies (with ZPE correction) are given in kcal/mol.

Fig. S5. Optimized structures of the minimum-energy isomers of $VO(H_2O)Ar_2^+$. The relative energies (with ZPE correction) are given in kcal/mol.

Fig. S6. Experimental infrared spectrum (black) and simulated vibrational spectra (blue) of VO(H₂O)Ar⁺ in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S7. Experimental infrared spectrum (black) and simulated vibrational spectra (blue) of $VO(H_2O)_2Ar^+$ in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S8. Experimental infrared spectrum (black) and simulated vibrational spectra (blue) of $VO(H_2O)Ar_2^+$ in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S9. Experimental infrared spectrum (black) of $VO(H_2O)_2Ar^+$, calculated anharmonic vibrational spectrum (red) and harmonic vibrational spectrum (blue) of V-2A_3 and V-2B_2 in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S10. Potential energy surfaces for the reactions of VO⁺ + H₂O \rightarrow VO(H₂O)⁺ (s-V-1: Singlet State; t-V-1: Triplet State).

Fig. S11. Potential energy surfaces for the reactions of $VO^+ + 2H_2O \rightarrow V(OH)_2(H_2O)^+$ (s-V-2: Singlet State; t-V-2: Triplet State).

Fig. S12. Optimized structures of the minimum-energy isomers of $NbO(H_2O)^+$. The relative energies (with ZPE correction) are given in kcal/mol.

Fig. S13. Optimized structures of the minimum-energy isomers of $NbO(H_2O)_2^+$. The relative energies (with ZPE correction) are given in kcal/mol.

Fig. S14. Optimized structures of the minimum-energy isomers of NbO(H_2O)Ar⁺. The relative energies (with ZPE correction) are given in kcal/mol.

Fig. S15. Optimized structures of the minimum-energy isomers of $NbO(H_2O)_2Ar^+$. The relative energies (with ZPE correction) are given in kcal/mol.

Fig. S16. Optimized structures of the minimum-energy isomers of $NbO(H_2O)Ar_2^+$. The relative energies (with ZPE correction) are given in kcal/mol.

Fig. S17. Optimized structures of the minimum-energy isomers of $NbO(H_2O)_2Ar_2^+$. The relative energies (with ZPE correction) are given in kcal/mol.

Fig. S18. Experimental infrared spectrum (black) and simulated vibrational spectra (blue) of NbO(H₂O)Ar⁺ in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S19. Experimental infrared spectrum (black) and simulated vibrational spectra (blue) of $NbO(H_2O)_2Ar^+$ in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S20. Experimental infrared spectrum (black) and simulated vibrational spectra (blue) of NbO(H₂O)Ar₂⁺ in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S21. Experimental infrared spectrum (black) and simulated vibrational spectra (blue) of $NbO(H_2O)_2Ar_2^+$ in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S22. Experimental infrared spectrum (black) of NbO(H₂O)Ar⁺, calculated anharmonic vibrational spectrum (red) and harmonic vibrational spectrum (blue) of Nb-1C_1 in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S23. Experimental infrared spectrum (black) of NbO(H_2O)Ar₂⁺, calculated anharmonic vibrational spectrum (red) and harmonic vibrational spectrum (blue) of Nb-1C_a in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S24. Experimental infrared spectrum (black) of NbO(H_2O)₂Ar⁺, calculated anharmonic vibrational spectrum (red) and harmonic vibrational spectrum (blue) of Nb-2A_2 and Nb-2D_2 in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S25. Experimental infrared spectrum (black) of NbO(H_2O)₂ Ar_2^+ , calculated anharmonic vibrational spectrum (red) and harmonic vibrational spectrum (blue) of Nb-2A_a, Nb-2D_a and Nb-2D_b in O-H stretching frequency region. The two dashed red lines are corresponding to the symmetric (3657cm⁻¹) and asymmetric (3756 cm⁻¹) stretches of the isolated water molecule.

Fig. S26. Potential energy surfaces for the reactions of NbO⁺ + H₂O \rightarrow NbO(H₂O)⁺ (s-Nb-1: Singlet State; t-Nb-1: Triplet State).

Fig. S27. Potential energy surfaces for the reactions of NbO⁺ + $2H_2O \rightarrow HNb(OH)_3^+$ (s-Nb-2: Singlet State; t-Nb-2: Triplet State).