Electronic Supplementary Information

VUV Photochemistry and Nuclear Spin Conversion of Water and Water-Orthohydrogen Complexes in Parahydrogen Crystals at 4 K

Fatemeh S. Tahsildaran F.,^{*a,b*} Brendan Moore,^{*a*} Termeh Bashiri,^{*a*} Hatsuki Otani,^{*a*} Pavle Djuricanin,^{*a*} Rasoul Malekfar,^{*b*} Amir Hossein Farahbod,^{*c*} and Takamasa Momose^{*,*a*}

 ^a Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver BC V6T 1Z1, CANADA
^b Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran.
^c Research School of Plasma Physics and Nuclear Fusion, Research Institute of Nuclear Sciences and Technologies, AEOI, Tehran, Iran.

E-mail: momose@chem.ubc.ca

Contents

- I. Water transition wavenumbers and their spectral line intensities.
- II. Reaction schemes used in the simulation.
- III. Simulated concentration changes with various parameters.

I. Water transition wavenumbers and their spectral line intensities.

$Label^a$	$Species^b$	Vib. mode	Rotational	Wavenumber	Spectral line
			$\operatorname{assignment}^{c}$		$Intensity^d$
			$J_{K_aK_c}$ or j_k	$({\rm cm}^{-1})$	$(\mathrm{km} \ \mathrm{mol}^{-1})$
-	oD_2O	ν_2 bending	$1_{11} \leftarrow 0_{00}$	1197.70	37.090
$P(1)^{D2O}$	pD_2O	ν_3 stretching	$0_{00} \leftarrow 1_{01}$	2765.96	5.384
G1	pD_2O-oH_2	ν_3 stretching	$0_0 \leftarrow 1_1$	2769.30	5.384^{e}
G2	$pD_2O-(oH_2)_2$	ν_3 stretching	$0_0 \leftarrow 1_1$	2771.19	5.384^{e}
	/				
F3	$o \mathbf{D}_2 \mathbf{O} \text{-} (o \mathbf{H}_2)_n$	ν_3 stretching	$1_1 \leftarrow 0_0$	2781.17	
F2	$oD_2O-(oH_2)_2$	ν_3 stretching	$1_1 \leftarrow 0_0$	2782.59	30.863^{e}
F2'	$o D_2 O - (o H_2)_n$	ν_3 stretching	$1_1 \leftarrow 0_0$	2783.42	
F1	oD_2O-oH_2	ν_3 stretching	$1_1 \leftarrow 0_0$	2785.18	30.863^{e}
F1'	$o \mathrm{D}_2 \mathrm{O}$ - $(o \mathrm{H}_2)_n$	ν_3 stretching	$1_1 \leftarrow 0_0$	2786.07	
$R(0)^{D2O}$	oD_2O	ν_3 stretching	$1_{01} \leftarrow 0_{00}$	2789.40	30.863
$R(1)^{D2O}$	pD_2O	ν_3 stretching	$2_{02} \leftarrow 1_{01}$	2800^{f}	
_	HDO	ν_2 bending	$1_{01} \leftarrow 0_{00}$	1416.94	22.196
$\mathbf{E4}$	$HDO_{-}(\rho H_{2})_{-}$	ν_2 stretching	$1_1 \leftarrow 0_0$	3699.04	
E3	HDO- $(oH_2)_n$	ν_2 stretching	$1_1 \leftarrow 0_0$	3700.69	
E2	HDO- $(oH_2)_n$	ν_2 stretching	$1_1 \leftarrow 0_0$	3702.55	
E2'	HDO- $(oH_2)_n$	ν_3 stretching	$1_1 \leftarrow 0_0$	3703.02	
E1	HDO-oH ₂	ν_{2} stretching	$1_1 \leftarrow 0_0$	3705.46	19.944
E1'	HDO- $(oH_2)_n$	ν_3 stretching	$1_1 \leftarrow 0_0$	3705.89	
	(2)///	÷ 0	1 0		
T1	HDO-H	ν_3 stretching		3708.89	
$R(0)^{HDO}$	HDO	ν_3 stretching	$1_{01} \leftarrow 0_{00}$	3710.24	19.944
_	$p\mathrm{H}_{2}\mathrm{O}$	ν_2 bending	$1_{11} \leftarrow 0_{00}$	1631.60	68.226
$\mathrm{P}(1)^{\mathrm{H2O}}$	$ortho-H_2O$	ν_3 stretching	$0_{00} \leftarrow 1_{01}$	3719.79	17.397
D3	$oH_2O-(oH_2)_2$	ν_3 stretching	$0_0 \leftarrow 1_1$	3724.45	17.397^{e}
D1	oH ₂ O-oH ₂	ν_3 stretching	$0_0 \leftarrow 1_1$	3725.43	17.397^{e}
D2	$oH_2O-(oH_2)_2$	ν_3 stretching	$0_0 \leftarrow 1_1$	3728.30	17.397^{e}
	- (-/-	÷ 0			
C3	$pH_2O-(oH_2)_2$	ν_3 stretching	$1_1 \leftarrow 0_0$	3754.42	48.611^{e}
C1	pH_2O-oH_2	ν_3 stretching	$1_1 \leftarrow 0_0$	3758.44	48.611^{e}
S1	pH_2O-H	ν_3 stretching		3764.21	
$R(0)^{\rm H2O}$	pH_2O	ν_3 stretching	$1_{01} \leftarrow 0_{00}$	3765.47	48.611
C2	pH_2O-oH_2	ν_3 stretching	$1_1 \leftarrow 0_0$	3773.41	48.611^{e}
$R(1)^{H2O}$	$o H_2 O$	ν_3 stretching	$2_{02} \leftarrow 1_{01}$	3787.23	

 a Labels used in Fig. 2 in the main text.

^b The assignment of the number of oH_2 in $(water)(oH_2)_n$ complexes is tentative.

^c Most of the assignments are based on Refs. S1 and S2. The quantum number $J_{K_aK_c}$ is for an isolated water molecule with a standard asymmetric rotor notation. The quantum number j_k is for (water) (oH_2) complexes with j and k corresponds to the rotational angular momentum of water and its projection onto the axis of the complex. ^d Spectral line intensities are calculated from the Einstein-A coefficient obtained from the HITRAN web page (Ref. S3. The original publication is found in Ref. S4.). In order to convert the coefficient A_{ij} (s⁻¹) to the spectral line intensities S_{ij} (km mol⁻¹) at T = 0 K, we used the following equation

$$S_{ij} = \frac{A_{ij}}{8\pi c\nu_{ij}^2} \frac{g'}{g''},$$

where $c = 3 \times 10^{10} \text{ (cm s}^{-1)}$ is the speed of light, $\nu_{ij} \text{ (cm}^{-1)}$ is the transition wavenumber in the gas phase, and g' and g'' are the statistical weights in the upper and lower state, respectively. Similar values can be also obtained in Ref. S5 using T = 4 K and $P = 10^{-5}$ atm. As mentioned in the main text, an additional correction due to the dielectric properties of the matrix host is also included, which increases the spectral line intensities by 6.0% in the solid (Ref. S6).

 e These intensities are assumed to be the same as that without oH_{2} clustering.

 f A broad line.

References

S1 M. E. Fajardo, S. Tam and M. E. DeRose, J. Mol. Struct., 2004, 695-696, 111 - 127.

S2 K. A. Kufeld, W. R. Wonderly, L. O. Paulson, S. C. Kettwich and D. T. Anderson, J. Phys. Chem. Lett., 2012, 3, 342 - 347.

S3 https://hitran.org/lbl

S4 I Gordon et al., J. Quant. Spectrosc. Rad. Trans., 2017, 203, 3 - 69.

S5 Y. Babikov, I. Gordon, S. Mikhailenko, L. Rothman and S. Tashkun, HITRAN on the Web, https://hitran.iao.ru.

S6 T. Wakabayashi, T. Momose and M. E. Fajardo, J. Chem Phys. 2019, 151, 234301.

II. Reaction schemes used in the simulation.

In order to simulate the concentration changes, we have considered the following reactions and solved the coupled reaction rate equations numerically. For simplicity, we ignored the nuclear spin conversion and the conservation of nuclear spin in the reactions. We assumed that the nuclear spin conversion is faster than our experimental timescale, such that all water molecules were assumed to be in their lowest energy nuclear spin state (*i.e.* pH_2O and oD_2O).

(1) Photodissociation reactions

$$\begin{array}{l} (1\mathrm{A}) : \mathrm{D}_{2}\mathrm{O} \xrightarrow{k_{1}^{\mathrm{DDO}}} \mathrm{DO} + \mathrm{D} \\ (1\mathrm{B}) : \mathrm{HDO} \xrightarrow{k_{1}^{\mathrm{HDO}-\mathrm{HO}}} \mathrm{HO} + \mathrm{D} \\ (1\mathrm{C}) : \mathrm{HDO} \xrightarrow{k_{1}^{\mathrm{HDO}-\mathrm{DO}}} \mathrm{DO} + \mathrm{H} \\ (1\mathrm{D}) : \mathrm{H}_{2}\mathrm{O} \xrightarrow{k_{1}^{\mathrm{H2O}}} \mathrm{DO} + \mathrm{H} \end{array}$$

Here, the isotope dependence on the photodissociation rates is given by

$$k_1^{\rm D2O} = 1.163 \times k_1^{\rm H2O}, \quad k_1^{\rm HDO-HO} = 1.054 \times k_1^{\rm H2O} \times 0.8, \quad \text{and} \quad k_1^{\rm HDO-DO} = 1.054 \times k_1^{\rm H2O} \times 0.2$$

(taken from Ref. S7). The multiplication factors of 0.8 and 0.2 for $k_1^{\text{HDO-HO}}$ and $k_1^{\text{HDO-DO}}$, respectively, represent the branching ratio of the dissociation of HDO.

$$\begin{array}{l} (1a): \mathrm{D}_{2}\mathrm{O}\text{-}(o\mathrm{H}_{2}) \xrightarrow{k_{1}^{\mathrm{D2O}^{y}}} \mathrm{DO\text{-}}(o\mathrm{H}_{2}) + \mathrm{D} \\ (1a^{\prime}): \mathrm{D}_{2}\mathrm{O\text{-}}(o\mathrm{H}_{2}) \xrightarrow{k_{1}^{\mathrm{D2O}^{x}}} \mathrm{DO\text{+}}\mathrm{D} \\ (1b^{\prime}): \mathrm{HDO\text{-}}(o\mathrm{H}_{2}) \xrightarrow{k_{1}^{\mathrm{HDO\text{-}}\mathrm{HO}^{y}}} \mathrm{HO\text{-}}(o\mathrm{H}_{2}) + \mathrm{D} \\ (1b^{\prime}): \mathrm{HDO\text{-}}(o\mathrm{H}_{2}) \xrightarrow{k_{1}^{\mathrm{HDO\text{-}}\mathrm{HO}^{x}}} \mathrm{HO\text{+}}\mathrm{D} \\ (1c): \mathrm{HDO\text{-}}(o\mathrm{H}_{2}) \xrightarrow{k_{1}^{\mathrm{HDO\text{-}}\mathrm{DO}^{y}}} \mathrm{DO\text{-}}(o\mathrm{H}_{2}) + \mathrm{H} \\ (1c^{\prime}): \mathrm{HDO\text{-}}(o\mathrm{H}_{2}) \xrightarrow{k_{1}^{\mathrm{HDO\text{-}}\mathrm{DO}^{x}}} \mathrm{DO\text{+}}\mathrm{H} \\ (1d): \mathrm{H_{2}O\text{-}}(o\mathrm{H}_{2}) \xrightarrow{k_{1}^{\mathrm{H2O^{y}}}} \mathrm{HO\text{-}}(o\mathrm{H}_{2}) + \mathrm{H} \\ (1d^{\prime}): \mathrm{H_{2}O\text{-}}(o\mathrm{H}_{2}) \xrightarrow{k_{1}^{\mathrm{H2O^{x}}}} \mathrm{HO\text{+}}\mathrm{H} \end{array}$$

Here,

$$\begin{split} k_1^{\text{D2O}^x} &= k_1^{\text{D2O}} \times r, \quad k_1^{\text{D2O}^y} = k_1^{\text{D2O}} \times (1-r), \\ k_1^{\text{H2O}^x} &= k_1^{\text{H2O}} \times r, \quad k_1^{\text{H2O}^y} = k_1^{\text{H2O}} \times (1-r), \\ \text{and } k_1^{\text{HDO}^x} &= k_1^{\text{HDO}} \times r, \quad k_1^{\text{HDO}^y} = k_1^{\text{HDO}} \times (1-r), \end{split}$$

where r is the branching ratio for the oH_2 conversion upon photodissociation.

(2) Reactions with surrounding H_2 molecules

$$\begin{split} &(2\mathbf{A}):\mathbf{DO}\xrightarrow[\mathbf{H}_2]{}^{k_2} \rightarrow \mathbf{HDO} + \mathbf{H} \\ &(2\mathbf{B}):\mathbf{HO}\xrightarrow[\mathbf{H}_2]{}^{k_2} \rightarrow \mathbf{H}_2\mathbf{O} + \mathbf{H} \\ &(2\mathbf{a}):\mathbf{DO}-(o\mathbf{H}_2)\xrightarrow[\mathbf{H}_2]{}^{k_2} \rightarrow \mathbf{HDO}-(o\mathbf{H}_2) + \mathbf{H} \\ &(2\mathbf{b}):\mathbf{HO}-(o\mathbf{H}_2)\xrightarrow[\mathbf{H}_2]{}^{k_2} \rightarrow \mathbf{H}_2\mathbf{O}-(o\mathbf{H}_2) + \mathbf{H} \end{split}$$

Here, the reaction rate k_2 is assumed to be the same for all isotopes. Also, for simplicity, it was assumed that no oH_2 conversion occurs by the reactions of (2a) and (2b).

(3) Reactions with a hydrogen atom $_{k^{\text{H}}}$

$$\begin{array}{l} (3\mathrm{A}):\mathrm{DO}+\mathrm{H}\xrightarrow{k_3^{\mathrm{D}}}\mathrm{HDO}\\ (3\mathrm{B}):\mathrm{DO}+\mathrm{D}\xrightarrow{k_3^{\mathrm{D}}}\mathrm{D}_2\mathrm{O}\\ (3\mathrm{C}):\mathrm{HO}+\mathrm{H}\xrightarrow{k_3^{\mathrm{D}}}\mathrm{H}_2\mathrm{O}\\ (3\mathrm{C}):\mathrm{HO}+\mathrm{D}\xrightarrow{k_3^{\mathrm{D}}}\mathrm{HDO}\\ (3\mathrm{D}):\mathrm{HO}+\mathrm{D}\xrightarrow{k_3^{\mathrm{D}}}\mathrm{HDO}\\ (3\mathrm{a}):\mathrm{DO}{-}(o\mathrm{H}_2)+\mathrm{H}\xrightarrow{k_3^{\mathrm{H}}}\mathrm{HDO}{-}(o\mathrm{H}_2)\\ (3\mathrm{b}):\mathrm{DO}{-}(o\mathrm{H}_2)+\mathrm{D}\xrightarrow{k_3^{\mathrm{D}}}\mathrm{D}_2\mathrm{O}{-}(o\mathrm{H}_2)\\ (3\mathrm{c}):\mathrm{HO}{-}(o\mathrm{H}_2)+\mathrm{H}\xrightarrow{k_3^{\mathrm{H}}}\mathrm{H}_2\mathrm{O}{-}(o\mathrm{H}_2)\\ (3\mathrm{d}):\mathrm{HO}{-}(o\mathrm{H}_2)+\mathrm{D}\xrightarrow{k_3^{\mathrm{D}}}\mathrm{HDO}{-}(o\mathrm{H}_2) \end{array}$$

Here, $k_3^{\rm D} = 0.5 \times k_3^{\rm H}$. The reaction rate k_3 is assumed to be the same for all the isotopes. The difference between $k_3^{\rm D}$ and $k_3^{\rm H}$ originates in the difference in the tunneling rate between H and D atoms (see the main text in Sec. 3.4). Also, for simplicity, it was assumed that no $o_{\rm H_2}$ conversion occurs by the reactions of (3a), (3b), (3c), and (3d).

S7 N. Shafer, S. Satyapal and R. Bersohn, The Journal of Chemical Physics, 1989, 90, 6807?6808.

III. Simulated concentration changes with various parameters.

The dependence of different rate constant values on the concentration changes are show below. Here, we changed the values of k_1^{H2O} , k_2 , k_3^{H} , and r given in the above reaction schemes. The isotope dependences are fixed to those listed in the above Sec. II. The initial concentration of each species used in the simulation is listed in the table below.

Species	Initial concentration	Species	Initial concentration
	ppm		ppm
oD_2O	16	$oD_2O-(oH_2)$	14
pD_2O	0	$pD_2O-(oH_2)$	0
HDO	34	$HDO-(oH_2)$	14
pH_2O	10	$pH_2O-(oH_2)$	6
oH_2O	0	$oH_2O-(oH_2)$	0
HO	0	$HO-(oH_2)$	0
DO	0	$DO-(oH_2)$	0
Η	0		
D	0		

Graph legends

 oD₂O HDO pH₂O OD OH

 $\begin{array}{rl} & oD_2O \hbox{-} oH_2 \\ & -\cdots & HDO \hbox{-} oH_2 \\ & -\cdots & pH_2O \hbox{-} oH_2 \end{array}$

Parameter values that reproduce the observed concentration changes are marked in **bold** blue in the following figures.

IIIb. k_1^{H2O} dependence. The acceptable range is 0.01 h⁻¹ $\gtrsim k_1^{\text{H2O}} \gtrsim 0.005$ h⁻¹.

IIId. $k_3^{\rm H}$ dependence. The acceptable range is 10 ppm s⁻¹ $\gtrsim k_3^{\rm H}$.

