Supporting information

Computational Design of Janus Polymersomes with Controllable Fission from Double Emulsions

Shanlong Li, ${ }^{a}$ Chunyang Yu*a, Yongfeng Zhou*a
${ }^{\text {a }}$ School of Chemistry \& Chemical Engineering, Frontiers Science Center for Transformative
Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, China
S1. DPD fundamentals. S3
S2. Finite size effect. S5
S3. The stability of double emulsions. S6
S4. Dewetting of the double emulsion. S7
S5. Calculation of the degree of phase separation. S8
S6. Co-assembly of $\mathrm{AB} / \mathrm{AC}$ blends through double emulsion. S9
S7. Co-assembly of $\mathbf{A B} / \mathbf{A C} / \mathrm{BC}$ blends through double emulsion. S10
S8. Effect of the number of BC. S12
S9. Mean-square displacement curves of polymers. S13
S10. References. S14

S1. DPD fundamentals.

In DPD method, like molecular dynamics, the motion of all the DPD beads obeys Newton's equation of motion.

$$
\begin{equation*}
\frac{d r_{i}}{d t}=v_{i}, \quad \frac{d v_{i}}{d t}=f_{i} / m_{i} \tag{S1}
\end{equation*}
$$

where $\boldsymbol{r}_{i}, \boldsymbol{v}_{i}$ and m_{i} denote the position vector, velocity vector and mass of beads respectively, and \boldsymbol{f}_{i} is the force acting on bead i. The force $\boldsymbol{F}_{i j}$ exerted on bead i by bead j is consisted of a conservative force ${ }^{F_{i j}}$, a dissipative force ${ }^{F_{i j}^{D}}$ and a random force $F_{i j}^{R}$. Thus, the total force \boldsymbol{f}_{i} is given by

$$
\begin{equation*}
f_{i}=\sum_{j \neq i}\left(F_{i j}^{C}+F_{i j}^{D}+F_{i j}^{R}\right) \tag{S2}
\end{equation*}
$$

where the sum runs over all other beads within the cutoff radius r_{c}. And the conservative force ${ }_{i j}^{C}$, dissipative force $F_{i j}^{D}$ and random force $F_{i j}^{R}$ are given by

$$
\begin{align*}
& F_{i j}^{C}= \begin{cases}a_{i j}\left(r_{c}-r_{i j}\right) e_{i j} & r_{i j} \leq r_{c} \\
r_{i j}>r_{c}\end{cases} \tag{S3}\\
& F_{i j}^{D}=-\gamma \omega^{D}\left(r_{i j}\right)\left(e_{i j} \cdot v_{i j}\right) e_{i j} \tag{S4}\\
& F_{i j}^{R}=\sigma \omega^{R}\left(r_{i j}\right) \theta_{i j} e_{i j} \tag{S5}
\end{align*}
$$

where $a_{i j}$ is a constant that describes the maximum repulsion between two interacting beads. $r_{i j}$ is the distance between beads i and j. $e_{i j}=r_{i j} / r_{i j}, v_{i j}=v_{i}-v_{j}, v_{i}$ and v_{j} are the velocities of beads i and j, respectively. γ and σ are the amplitudes of dissipative and random forces, respectively. $\theta_{i j}$ is a randomly fluctuating variable. ω^{D} and ω^{R} are r-dependent weight functions for dissipative and random forces, respectively. According to the fluctuation-dissipation theorem, $\omega_{i j} D(r)=\left[\omega_{i j}^{R}(r)\right]^{2}$ and $\sigma^{2}=2 \gamma k_{B} T$ ($\sigma=3$ and $\gamma=4.5$). The following simple form of ω^{D} and ω^{R} was chosen by Groot and Warren ${ }^{1}$:

$$
\omega^{D}(r)=\left[\omega^{R}(r)\right]^{2}= \begin{cases}\left(1-r / r_{c}\right)^{2} & r \leq r_{c} \tag{S6}\\ 0 & r>r_{c}\end{cases}
$$

Also, the chain beads of polymers are connected by a harmonic bond:

$$
\begin{equation*}
F_{i j}^{B}=-\sum_{j} C^{B}\left(r_{i j}-r_{e q}\right) e_{i j} \tag{S7}
\end{equation*}
$$

where C^{B} and $r_{e q}$ denotes the bond rigidity and the equilibrium bond length, respectively. Here, the most common and reliable values $\left(C^{B}=4.0 \text { and } r_{e q}=0\right)^{1-5}$ were adopted in our simulations.

The repulsive interaction parameters ($a_{i j}$ in eq S 3) can be estimated from the χ-parameter in Flory-Huggins theory according to the study of Groot and Warren ${ }^{1}$ as follows:

$$
\begin{equation*}
a_{i j}=a_{i i}+3.27 \chi_{i j} \tag{S8}
\end{equation*}
$$

S2. Finite size effect.

Fig. S1. Snapshots of Janus polymersomes obtained in different boxes sized $\left(40 r_{\mathrm{c}}\right)^{3},\left(50 r_{\mathrm{c}}\right)^{3}$ and $\left(100 r_{\mathrm{c}}\right)^{3}$, respectively. Color code: block A, red; block B, cyan; block C, yellow.

S3. The stability of double emulsions.

(a)

(b)

(c)

Fig. S2. Sequential sectional snapshots of the double emulsions with different $\mathrm{A}_{4} \mathrm{~B}_{8}$ diblock copolymer concentrations $\left(\varphi_{\text {polymer }}\right)$. (a) $\varphi_{\text {polymer }}=0.02$, and the simulation times are $0,2.0 \times 10^{5}$, 5.0×10^{5}, and 1.0×10^{6} steps, respectively. (b) $\varphi_{\text {polymer }}=0.10$, and the simulation times are 0 and 2.0×10^{6} steps. d_{1} and d_{2} are the thickness of the oil phase in different positions. (c) $\varphi_{\text {polymer }}=0.40$, and the simulation times are 0 and 2.0×10^{6} steps. Color code: Water, pink; Oil, mauve; block A, red; block B, cyan.

S4. Dewetting of the double emulsion.

Table S1. Inner size $\left(r_{\text {in }}\right)$, surface area (A) and the critical number of polymer chains $\left(N_{\mathrm{c}}\right)$ for different double emulsions.

$\boldsymbol{r}_{\text {in }}$	$\mathbf{6}$	$\mathbf{8}$	$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6}$
\boldsymbol{A}	452.4	804.2	1256.6	1809.6	2463.0	3217.0
$\boldsymbol{N}_{\mathbf{c}}$	1000	1500	2500	3500	5000	6500

(b)

(c)

Fig. S3. Sequential sectional snapshots of the dewetting process with different polymer concentrations. (a) $N_{\text {polymer }}=2000$, and the simulation times are $0,1.0 \times 10^{6}, 2.0 \times 10^{6}$, and $2.5 \times$ 10^{6} steps, respectively. (b) $N_{\text {polymer }}=3500$, and the simulation times are $0,1.0 \times 10^{6}, 2.0 \times 10^{6}$, and 3.0×10^{6} steps, respectively. (c) $N_{\text {polymer }}=4500$, and the simulation times are $0,1.0 \times 10^{6}, 1.6 \times$ 10^{6}, and 3.0×10^{6} steps, respectively. Water phase are omitted for clarity. Color code: Oil, mauve; block A, red; block B, cyan.

S5. Calculation of the degree of phase separation.

As shown in Fig. S5, the degree of phase separation ($d p s$) of blocks B and C is defined as ${ }^{6}$
$d p s=1-\frac{\left\langle\rho_{B} \rho_{C}\right\rangle}{\sqrt{\left\langle\rho_{B}^{2}\right\rangle\left\langle\rho_{C}^{2}\right\rangle}}$
where ρ_{B} and ρ_{C} are the number densities of beads B and C in the spherical space with each bead B or C as the origin and $r_{\text {cut }}$ as the cutoff radius. $\langle\cdots\rangle$ is the ensemble average. $d p s=0$ means beads B and C mix perfectly, while $d p s=1$ is for complete phase separation.

Fig. S4. Schematic diagram for the calculation of the degree of phase separation. Beads B and C are in cyan and yellow, respectively.

S6. Co-assembly of $\mathrm{AB} / \mathbf{A C}$ blends through double emulsion.

Fig. S5. Sequential sectional snapshots of the formation of two-component polymersomes with different values of a_{BC}. (a) $a_{\mathrm{BC}}=25$, and the simulation times are $0,0.8 \times 10^{6}, 1.2 \times 10^{6}$, and 2.0 $\times 10^{6}$ steps, respectively. (b) $a_{\mathrm{BC}}=30$, and the simulation times are $0,0.8 \times 10^{6}, 1.2 \times 10^{6}$, and 2.0 $\times 10^{6}$ steps, respectively. (c) $a_{\mathrm{BC}}=40$, and the simulation times are $0,0.8 \times 10^{6}, 1.2 \times 10^{6}$, and 2.0 $\times 10^{6}$ steps, respectively. Water phase are omitted for clarity. Color code: Oil, mauve; block A, red; block B, cyan; block C, yellow.

S7. Co-assembly of $\mathbf{A B} / \mathbf{A C} / \mathrm{BC}$ blends through double emulsion.

Fig. S6. Sectional snapshots of the vesicles obtained from $A B / A C$ blends and $A B / A C / B C$ blends with different values of a_{BC}. Color code: block A, red; block B, cyan; block C, yellow.

Fig. S7. Sequential sectional snapshots of the formation of Janus polymersome. The simulation times are $0,0.6 \times 10^{6}, 1.0 \times 10^{6}$, and 2.0×10^{6} steps, respectively. Water phase are omitted for clarity. Color code: Oil, mauve; block A, red; block B, cyan; block C, yellow.

Fig. S8. Sectional snapshots of Janus polymersome formed through the co-assembly of $\mathrm{AB} / \mathrm{CD} / \mathrm{BC}$ blends with $a_{\mathrm{AD}}=25$ (a) and $a_{\mathrm{AD}}=40(\mathrm{~b})$. Water phase are omitted for clarity. Color code: block A, red; block B, cyan; block C, yellow; block D, magenta.

S8. Effect of the number of BC.

Fig. S9. (a) Sectional snapshot of the Janus polymersome obtained with $N_{\mathrm{BC}}=285$. (b) Enlarged detail the extra BC domain in the membrane. (c) Snapshot of the extra BC domain attached to the Janus ring. Color code: block A, red; block B, cyan; block C, yellow.

S9. Mean-square displacement curves of polymers.

Fig. S10. Mean-square displacement (MSD) curves of polymers with different polymer concentrations.

S10. References.

(1) Groot, R. D.; Warren, P. B., Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. J. Chem. Phys. 1997, 107, 4423-4435.
(2) Groot, R. D.; Rabone, K., Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophys. J. 2001, 81, 725-736.
(3) Posel, Z.; Limpouchova, Z.; Sindelka, K.; Lisal, M.; Prochazka, K., Dissipative particle dynamics study of the ph-dependent behavior of poly (2-vinylpyridine)-block-poly (ethylene oxide) diblock copolymer in aqueous buffers. Macromolecules 2014, 47, 2503-2514.
(4) Goel, H.; Chandran, P. R.; Mitra, K.; Majumdar, S.; Ray, P., Estimation of interfacial tension for immiscible and partially miscible liquid systems by Dissipative Particle Dynamics. Chem. Phys. Lett. 2014, 600, 62-67.
(5) Rezaei, H.; Amjad-Iranagh, S.; Modarress, H., Self-Accumulation of Uncharged Polyaromatic Surfactants at Crude Oil-Water Interface: A Mesoscopic DPD Study. Energy \& Fuels 2016, 30, 6626-6639.
(6) Lin, Y. J.; Jiménez-García, K.; Spielman, I. B., Spin-orbit-coupled Bose-Einstein condensates. Nature 2011, 471, 83-86.

