Supporting information

Computational Design of Janus Polymersomes with Controllable Fission from Double Emulsions

Shanlong Li,^a Chunyang Yu*a, Yongfeng Zhou*a

^aSchool of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, China

S1.	DPD fundamentals.	
S2.	Finite size effect.	
S3.	The stability of double emulsions.	S6
S4.	Dewetting of the double emulsion.	S7
S5.	Calculation of the degree of phase separation.	
S6.	Co-assembly of AB/AC blends through double emulsion.	
S7.	Co-assembly of AB/AC/BC blends through double emulsion	S10
S8.	Effect of the number of BC.	
S9.	Mean-square displacement curves of polymers.	
S10.	References.	S14

S1. DPD fundamentals.

In DPD method, like molecular dynamics, the motion of all the DPD beads obeys Newton's equation of motion.

$$\frac{dr_i}{dt} = v_i, \qquad \frac{dv_i}{dt} = f_i/m_i \tag{S1}$$

where \mathbf{r}_i , \mathbf{v}_i and \mathbf{m}_i denote the position vector, velocity vector and mass of beads respectively, and \mathbf{f}_i is the force acting on bead *i*. The force \mathbf{F}_{ij} exerted on bead *i* by bead *j* is consisted of a conservative force F_{ij}^C , a dissipative force F_{ij}^D and a random force F_{ij}^R . Thus, the total force \mathbf{f}_i is given by

$$f_{i} = \sum_{j \neq i} \left(F_{ij}^{C} + F_{ij}^{D} + F_{ij}^{R} \right)$$
(S2)

where the sum runs over all other beads within the cutoff radius r_c . And the conservative force F_{ij}^C , dissipative force F_{ij}^D and random force F_{ij}^R are given by

$$F_{ij}^{C} = \begin{cases} a_{ij}(r_{c} - r_{ij})e_{ij} & r_{ij} \le r_{c} \\ 0 & r_{ij} > r_{c} \end{cases}$$
(S3)

$$F_{ij}^{D} = -\gamma \omega^{D} (r_{ij}) (e_{ij} \cdot v_{ij}) e_{ij}$$
(S4)

$$F_{ij}^{R} = \sigma \omega^{R}(r_{ij})\theta_{ij}e_{ij} \tag{S5}$$

where a_{ij} is a constant that describes the maximum repulsion between two interacting beads. r_{ij} is the distance between beads *i* and *j*. $e_{ij} = r_{ij}/r_{ij}$, $v_{ij} = v_i - v_j$, v_i and v_j are the velocities of beads *i* and *j*, respectively. γ and σ are the amplitudes of dissipative and random forces, respectively. θ_{ij} is a randomly fluctuating variable. ω^D and ω^R are r-dependent weight functions for dissipative and random forces, respectively. According to the fluctuation-dissipation theorem, $\omega_{ij}^D(r) = [\omega_{ij}^R(r)]^2$ and $\sigma^2 = 2\gamma k_B T$ ($\sigma = 3$ and $\gamma = 4.5$). The following simple form of ω^D and ω^R was chosen by Groot and Warren¹:

$$\omega^{D}(r) = \left[\omega^{R}(r)\right]^{2} = \begin{cases} \left(1 - r/r_{c}\right)^{2} & r \le r_{c} \\ 0 & r > r_{c} \end{cases}$$
(S6)

Also, the chain beads of polymers are connected by a harmonic bond:

$$F_{ij}^{B} = -\sum_{j} C^{B} (r_{ij} - r_{eq}) e_{ij}$$
(S7)

where C^B and r_{eq} denotes the bond rigidity and the equilibrium bond length, respectively. Here, the most common and reliable values ($C^B = 4.0$ and $r_{eq} = 0$)¹⁻⁵ were adopted in our simulations.

The repulsive interaction parameters (a_{ij} in eq S3) can be estimated from the χ -parameter in Flory-Huggins theory according to the study of Groot and Warren¹ as follows:

$$a_{ij} = a_{ii} + 3.27 \chi_{ij} \tag{S8}$$

S2. Finite size effect.

Fig. S1. Snapshots of Janus polymersomes obtained in different boxes sized $(40r_c)^3$, $(50r_c)^3$ and $(100r_c)^3$, respectively. Color code: block A, red; block B, cyan; block C, yellow.

S3. The stability of double emulsions.

Fig. S2. Sequential sectional snapshots of the double emulsions with different A_4B_8 diblock copolymer concentrations ($\varphi_{polymer}$). (a) $\varphi_{polymer} = 0.02$, and the simulation times are 0, 2.0×10^5 , 5.0×10^5 , and 1.0×10^6 steps, respectively. (b) $\varphi_{polymer} = 0.10$, and the simulation times are 0 and 2.0×10^6 steps. d_1 and d_2 are the thickness of the oil phase in different positions. (c) $\varphi_{polymer} = 0.40$, and the simulation times are 0 and 2.0×10^6 steps. Color code: Water, pink; Oil, mauve; block A, red; block B, cyan.

S4. Dewetting of the double emulsion.

Table S1. Inner size (r_{in}) , surface area (A) and the critical number of polymer chains (N_c) for different double emulsions.

r _{in}	6	8	10	12	14	16
A	452.4	804.2	1256.6	1809.6	2463.0	3217.0
N _c	1000	1500	2500	3500	5000	6500

Fig. S3. Sequential sectional snapshots of the dewetting process with different polymer concentrations. (a) $N_{polymer} = 2000$, and the simulation times are 0, 1.0×10^6 , 2.0×10^6 , and 2.5×10^6 steps, respectively. (b) $N_{polymer} = 3500$, and the simulation times are 0, 1.0×10^6 , 2.0×10^6 , and 3.0×10^6 steps, respectively. (c) $N_{polymer} = 4500$, and the simulation times are 0, 1.0×10^6 , 1.0×10^6 , 1.6×10^6 , and 3.0×10^6 steps, respectively. Water phase are omitted for clarity. Color code: Oil, mauve; block A, red; block B, cyan.

S5. Calculation of the degree of phase separation.

As shown in Fig. S5, the degree of phase separation (dps) of blocks B and C is defined as⁶

$$dps = 1 - \frac{\langle \rho_B \rho_C \rangle}{\sqrt{\langle \rho_B^2 \rangle \langle \rho_C^2 \rangle}}$$

where ρ_B and ρ_C are the number densities of beads B and C in the spherical space with each bead B or C as the origin and r_{cut} as the cutoff radius. $\langle \cdots \rangle$ is the ensemble average. dps = 0 means beads B and C mix perfectly, while dps = 1 is for complete phase separation.

Fig. S4. Schematic diagram for the calculation of the degree of phase separation. Beads B and C are in cyan and yellow, respectively.

Fig. S5. Sequential sectional snapshots of the formation of two-component polymersomes with different values of a_{BC} . (a) $a_{BC} = 25$, and the simulation times are 0, 0.8×10^6 , 1.2×10^6 , and 2.0 $\times 10^6$ steps, respectively. (b) $a_{BC} = 30$, and the simulation times are 0, 0.8×10^6 , 1.2×10^6 , and 2.0 $\times 10^6$ steps, respectively. (c) $a_{BC} = 40$, and the simulation times are 0, 0.8×10^6 , 1.2×10^6 , and 2.0 $\times 10^6$ steps, respectively. Water phase are omitted for clarity. Color code: Oil, mauve; block A, red; block B, cyan; block C, yellow.

S7. Co-assembly of AB/AC/BC blends through double emulsion.

Fig. S6. Sectional snapshots of the vesicles obtained from AB/AC blends and AB/AC/BC blends with different values of a_{BC} . Color code: block A, red; block B, cyan; block C, yellow.

Fig. S7. Sequential sectional snapshots of the formation of Janus polymersome. The simulation times are 0, 0.6×10^6 , 1.0×10^6 , and 2.0×10^6 steps, respectively. Water phase are omitted for clarity. Color code: Oil, mauve; block A, red; block B, cyan; block C, yellow.

Fig. S8. Sectional snapshots of Janus polymersome formed through the co-assembly of AB/CD/BC blends with $a_{AD} = 25$ (a) and $a_{AD} = 40$ (b). Water phase are omitted for clarity. Color code: block A, red; block B, cyan; block C, yellow; block D, magenta.

S8. Effect of the number of BC.

Fig. S9. (a) Sectional snapshot of the Janus polymersome obtained with $N_{BC} = 285$. (b) Enlarged detail the extra BC domain in the membrane. (c) Snapshot of the extra BC domain attached to the Janus ring. Color code: block A, red; block B, cyan; block C, yellow.

S9. Mean-square displacement curves of polymers.

Fig. S10. Mean-square displacement (MSD) curves of polymers with different polymer concentrations.

S10. References.

(1) Groot, R. D.; Warren, P. B., Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. *J. Chem. Phys.* **1997**, *107*, 4423-4435.

(2) Groot, R. D.; Rabone, K., Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. *Biophys. J.* **2001**, *81*, 725-736.

(3) Posel, Z.; Limpouchova, Z.; Sindelka, K.; Lisal, M.; Prochazka, K., Dissipative particle dynamics study of the ph-dependent behavior of poly (2-vinylpyridine)-block-poly (ethylene oxide) diblock copolymer in aqueous buffers. *Macromolecules* **2014**, *47*, 2503-2514.

(4) Goel, H.; Chandran, P. R.; Mitra, K.; Majumdar, S.; Ray, P., Estimation of interfacial tension for immiscible and partially miscible liquid systems by Dissipative Particle Dynamics. *Chem. Phys. Lett.* **2014**, *600*, 62-67.

(5) Rezaei, H.; Amjad-Iranagh, S.; Modarress, H., Self-Accumulation of Uncharged Polyaromatic Surfactants at Crude Oil–Water Interface: A Mesoscopic DPD Study. *Energy & Fuels* **2016**, *30*, 6626-6639.

(6) Lin, Y. J.; Jiménez-García, K.; Spielman, I. B., Spin–orbit-coupled Bose–Einstein condensates. *Nature* **2011**, *471*, 83-86.