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1. EFFECT OF ELECTRIC-FIELD NOISE ON INTERNAL STATES OF MOLECULAR IONS

There are many sources of electric-field noise in ion traps [1]: fluctuating electrical fields from injected circuits, varying
patch potentials from the trap surface, Johnson noise from the resistance of trap electrodes, and so on. In the DPQL
procedure, these noise sources could directly couple to the dipole moments of molecular ions and thus cause transitions
between Λ-doublet splittings and rotational states as well as via ion motion. Here we consider two major forms of
electric-field noise[2]: one is a fluctuating, uniform electrical field ζ(t); the other is a fluctuating quadrupole field, which
perturbs the spring constant of the trap by ∆K = ε(t)Mω2

z , where M is ion mass and ωz is the axial secular frequency.
The Hamiltonian under the above noise model can then be written as:

H =
P2

2M
+

1
2

M(1 + ε(t))ω2
z z2 + ζ(t)qz. (S1)

Here P is the ion momentum and q is the charge of ion. Using first-order time-dependent perturbation theory, we can
derive the heating rate near the motional ground state[3, 4]:

d
dt
〈n〉 = πω2

z
4

Sε(2ωz) +
q2

2Mh̄ωz
Sζ(ωz), (S2)

where Sj(ω) =
∫ ∞
−∞ dτ〈j(t)j(t + τ)〉eiωτ (with j = ε, ζ) is the power spectral density of the fluctuating ε(t) and ζ(t)

respectively and |n〉 is the motional state. Here, we neglect the higher order term 〈ε2(t)ζ2(t)〉. The first term in eqn (S2)
is from the quadrupole field fluctuation. For a molecular ion that is sympathetically cooled and well compensated from
excess micromotion, the coupling between the quadrupole field fluctuation and the molecular ion dipole is small since
the electric field noise is close to zero at the RF null. The second term couples the molecular ion dipole through Sζ(ω),
which results in a spectral energy density ρH(ω)

ρH(ω) = ε0Sζ(ω) =
2Mh̄ε0ωzΓ∗

q2 , (S3)

where ε0 is the permittivity of free space and Γ∗ is the heating rate caused by ζ(t). We model the frequency dependence
of the electric field noise as a single power law[5], Sζ(ω) ∝ f−0.6 over the Λ-doublet splitting range (ω < 2π × 100
MHz) and broadband noise for higher frequencies. Here we consider the co-trapped Ca+ and CaO+ to have an axial
COM frequency of ωz = 2π · 450 kHz and the COM heating rate to be Γ∗ = 300 quanta/s. For Λ-doublet of J = 7/2,
electric-field noise results in a transition rate Be f ρH(ω) ∼ 0.001 s-1, where Be f is the Einstein B coefficient for the
transition. This transition rate is negligible compared to the thermalization process from blackbody radiation, in which
the blackbody-limited life time is 4 s. This result indicates that electric-field noise could affect the DPQL process via
motional heating with effective dipole moment of order 10 e·nm, but not via directly coupling with dipole moment
of molecular ion which is on the order of 0.1 e·nm. We also calculate the effect of electric-field noise on the rotation
state distribution under room temperature using the rate equation model. The results shows that the blackbody-limited
lifetime of the states is not affected.
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2. NUMERICAL SIMULATION

To demonstrate some two-molecule techniques, we present the results of a numerical simulation of the Hamiltonian

H = ∑
q,i

ω
(i)
mol
2

σ
(i)
z + ωq

(
a†

q aq +
1
2

)
+

g(i)q

2
σ
(i)
x

(
a†

q + aq

) (S4)

where h̄ = 1, ω
(i)
mol is the energy splitting of molecule (i), ωq is the secular frequency of the normal mode q along the trap

axis, σ
(i)
x =

∣∣∣e(i)〉 〈f(i)
∣∣∣+ ∣∣∣f(i)〉 〈e(i)

∣∣∣, and σ
(i)
z =

∣∣∣f(i)〉 〈f(i)
∣∣∣− ∣∣∣e(i)〉 〈e(i)

∣∣∣. Here, g(i)q ≡ dE (i)0,q = d
e

√
2m(i)ω3

q b(i)q is the

vacuum Rabi frequency of the interaction where E (i)0,q is the electric field amplitude at the position of ion (i) due to a

single phonon in normal mode q, m(i) is the mass of ion (i), e is the elementary charge, and b(i)q is the component of the
eigenvector of normal mode q at ion (i). For simplicity, the effect of motional heating is not included in these simulations.

We present the results of numerical simulations of a three-ion chain with two CaO+ molecular ions in the X 2Π3/2
state, with J=7/2 on the outside ends of the chain and a single Ca+ atomic ion at the center of the chain. We present
simulations of various techniques for state preparation and for demonstrating the virtual-phonon-mediated dipole-
dipole interaction. To demonstrate the results, we plot the "average excitation" of each molecule (i) and each normal
mode q. We define the "average excitation" of molecule (i) to be the probability of measuring the molecule in the∣∣∣ f (i)〉 state

∣∣∣〈 f (i)
∣∣∣ψ(t)〉∣∣∣2. We define the "average excitation" of normal mode q to be the average phonon number〈

nq
〉
= 〈ψ(t)| a†

q aq |ψ(t)〉.
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Fig. S1. Simulation of a frequency sweep to prepare the |ee〉 state. We begin with all normal mode frequencies be-

low ω
(1)
mol and ω

(2)
mol in the motional ground state for all normal modes. We then increase the single-molecule trap

frequency ω0 linearly at a rate of ω̇0 = 3.0× 109 rad/s2 until both the antisymmetric and symmetric stretch mode fre-

quencies pass through ω
(1)
mol and ω

(2)
mol. (a) With equal splittings (ω(1)

mol = ω
(2)
mol), we select an arbitrary single-molecular-

excitation initial state |ψmol(0)〉 =
√

2
3 |ef〉+

√
1
3 eiπ/4 |fe〉. (b) With equal splittings, we start with |ψmol(0)〉 = |ff〉.

In this plot, the average excitations for molecules (1) and (2) are overlapping within the thickness of the line. (c)

ω
(1)
mol = ω

(2)
mol + 2π · 20 kHz and |ψmol(0)〉 =

√
2
3 |ef〉+

√
1
3 eiπ/4 |fe〉. Far away from resonance,

∣∣∣ω(1)
mol −ω

(2)
mol

∣∣∣� |J12|,
and the amplitude of oscillation between |fe〉 and |ef〉 is small. As one of the normal mode frequencies approaches
resonance, the coupling strength J12 increases, and the previously stated limit is no longer valid. In this regime, there

are nontrivial oscillations between |fe〉 and |ef〉. (d) ω
(1)
mol = ω

(2)
mol + 2π · 20 kHz and |ψmol(0)〉 = |ff〉. Again, the average

excitations for molecules (1) and (2) are overlapping within the thickness of the line. In every case shown, sweeping

the frequency such that the antisymmetric and symmetric stretch mode frequencies pass through ω
(1)
mol and ω

(2)
mol re-

moves any molecular excitation and prepares the molecular state in |ee〉. Additionally, if the initial molecular state is
|ψmol(0)〉 = |ff〉, such a sweep will yield two phonons in the antisymmetric stretch mode—as this is the first mode to
sweep through resonance—regardless of the difference in molecular splittings.
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Fig. S2. Simulation of molecular state preparation techniques. For each simulation, the initial molecular state is |ee〉
with a single phonon in either the symmetric or antisymmetric stretch mode, and the initial single-molecule trap

frequency is tuned such that the symmetric and antisymmetric stretch mode frequencies are above ω
(1)
mol and ω

(2)
mol.

The single-molecule trap frequency is decreased at a rate of ω̇0 = −2.0 × 109 rad/s2 until the antisymmetric and

symmetric stretch mode frequencies are below ω
(1)
mol and ω

(2)
mol. (a) With ω

(1)
mol = ω

(2)
mol, starting with a single phonon

in the antisymmetric stretch mode yields the Bell state
∣∣ψ+

〉
= (|fe〉+ |ef〉) /

√
2. (b) With ω

(1)
mol = ω

(2)
mol, starting

with a single phonon in the symmetric stretch mode yields the Bell state
∣∣ψ−〉 = (|fe〉 − |ef〉) /

√
2. (c) With ω

(1)
mol =

ω
(2)
mol + 2π · 20 kHz, starting with a single phonon in the antisymmetric stretch mode yields |fe〉. (d) With ω

(1)
mol =

ω
(2)
mol + 2π · 20 kHz, starting with a single phonon in the symmetric stretch mode yields |ef〉.
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Fig. S3. Two different methods to transfer the population from |fe〉 to |ef〉. In the first method, depicted in (a) and (b),
we start with the molecular splittings different by 2π · 20 kHz. To begin the transfer, we quickly set this difference
to zero, allowing the population to coherently oscillate between |fe〉 and |ef〉. After waiting tπ = π

2J12
, where J12 is

the virtual-phonon-mediated dipole-dipole interaction strength, we restore the difference in molecular splittings to
stop this oscillation. The average molecular excitation of molecules (1) and (2) are shown in (a) and the difference
in molecular splittings as a function of time is shown in (b). For the second method, shown in (c) and (d), we adia-
batically vary the difference in molecular splitting. To achieve a high probability transfer with a linear sweep of the
molecular splitting difference, it is necessary for the sweep of the molecular splitting difference

∣∣∆̇∣∣ � J2
12. To dra-

matically decrease the time needed to perform an adiabatic sweep, we change the molecular splitting difference in a
nonlinear fashion, with ramping speed ∆̇(t). The ramp is faster for larger differences in molecular splittings. For all

times, we maintain the limit
∣∣∆̇(t)∣∣� J2

12 +
(

1
2 (ω

(1)
mol −ω

(2)
mol)

)2
.
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