Electronic Supplementary Information (ESI)

Theoretical study of atomically dispersed MN_4/C (M = Fe or Mn) as high-activity catalysts for oxygen reduction reaction

Hao Xu,^a Dan Wang,^a Peixia Yang,^{*a} Anmin Liu,^{*b} Ruopeng Li,^a Yun Li,^a Lihui Xiao,^a Jinqiu Zhang^a and Maozhong An^a

a MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China.

b State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, 116000 Dalian, China

* Corresponding authors: Peixia Yang (yangpeixia@hit.edu.cn); Anmin Liu (liuanmin@dlut.edu.cn)

Fig. S1 Top view of the optimized geometry structure of pure graphene.

Fig. S2 Mulliken charge values of pure graphene.

Fig. S3 Optimized configurations of the oxygen reduction reaction intermediates adsorbed on pure graphene: (a) O₂, (b) OOH, (c) O, (d) OH, and (e) H₂O.

Fig. S4 Optimized configurations of the oxygen reduction reaction intermediates adsorbed on MnN_4/C : (a) O₂, (b) OOH, (c) O, (d) OH, and (e) H₂O. (f) Local density of state curves of O₂ adsorbed on MnN_4/C ; the Fermi level is set to zero (dotted line).

Fig. S5 Mulliken charge values on O_2 adsorbed on (a) FeN₄/C and (b) MnN₄/C.

Fig. S6 Optimized four-electron pathway of the OOH dissociation on MnN_4/C : (a) $O_2^* + H^+ + e^-$, (b) OOH*, (c) OOH* + H⁺ + e⁻, (d) $H_2O + O^*$, (e) $O + H^+ + e^- + H_2O$, (f) $OH^* + H_2O$, (g) $OH^* + H^+ + e^- + H_2O$, and (h) $2H_2O$.

Fig. S7 Optimized two-electron pathway of the OOH hydrogenation into HOOH on MnN_4/C : (a) OOH* + H⁺ + e⁻ and (b) O* + H₂O.

Fig. S8 The calculated PDOS of metal atoms in FeN_4/C and MnN_4/C , with the aligned Fermi level. (a) The PDOS of Fe atom in FeN_4/C , (b) The PDOS of Mn atom in MnN_4/C .

Fig. S9 The geometry structure and corresponding orbitals isosurface for the (a, b) $FeN_4/C@O_2$ and (c, d) $MnN_4/C@O_2$.

U= 0 V			
	$\Delta E + \varDelta ZPE + T \varDelta S (eV)$	$\Delta G_{\rm U}({ m eV})$	ΔG (eV)
O ₂ *	4.92	0	4.92
OOH*	3.95833	0	3.95833
0*	2.35386	0	2.35386
OH*	0.7998	0	0.7998
H ₂ O*	0	0	0

Table S1 The calculation process for free energy on FeN_4/C at different electrode potentials

U= 1.23 V			
	$\Delta E + \varDelta ZPE + T \varDelta S (eV)$	$\Delta G_{\rm U} ({\rm eV})$	$\Delta G (eV)$
O ₂ *	4.92	-1.23*4	0
OOH*	3.95833	-1.23*3	0.26833
0*	2.35386	-1.23*2	-0.10614
OH*	0.7998	-1.23*1	-0.4302
H ₂ O*	0	-1.23*0	0

U= 0.79 V			
	$\Delta E + \varDelta ZPE + T \varDelta S (eV)$	$\Delta G_{\rm U} ({\rm eV})$	ΔG (eV)
O ₂ *	4.92	-0.79*4	1.76
OOH*	3.95833	-0.79*3	1.58833
O*	2.35386	-0.79*2	0.77386
OH*	0.7998	-0.79*1	0.0098
H ₂ O*	0	-0.79*0	0

Table S2 The calculation process for free energy on MnN_4/C at different electrode potentials

U= 0 V			
	$\Delta E + \varDelta ZPE + T \varDelta S (eV)$	$\Delta G_{\rm U} ({\rm eV})$	ΔG (eV)
O ₂ *	4.92	0	4.92
OOH*	4.39162	0	4.39162
O*	2.38258	0	2.38258
OH*	0.73089	0	0.73089
H ₂ O*	0	0	0

U= 1.23 V			
	$\Delta E + \varDelta ZPE + T \varDelta S (eV)$	$\Delta G_{\rm U} ({\rm eV})$	ΔG (eV)
O ₂ *	4.92	-1.23*4	0
OOH*	4.39162	-1.23*3	0.70162
0*	2.38258	-1.23*2	-0.07742
OH*	0.73089	-1.23*1	-0.49911

H ₂ O*	0	-1.23*0	0
-------------------	---	---------	---

U= 0.52 V			
	$\Delta E + \varDelta ZPE + T \varDelta S (eV)$	$\Delta G_{\rm U} ({\rm eV})$	$\Delta G (eV)$
O ₂ *	4.92	-0.52*4	2.84
OOH*	4.39162	-0.52*3	2.83162
O*	2.38258	-0.52*2	1.34258
OH*	0.73089	-0.52*1	0.21089
H ₂ O*	0	-0.52*0	0