In ligand-field theory the energy of all the states arising from a particular electron configuration can be written as a linear combination of the Slater integrals F^k,

$$E = \sum_{k=0}^{2l} C_k F^k$$

.

It can be shown^{1,2} that all multiplet states arising from the same electron configuration have the same dependency on C_0 , i.e. C_0 is a fixed number for that particular configuration. A well-known consequence of this property of ligand-field theory is that excitations within a configuration do not depend on F⁰. However, on our simulations the high-spin to low-spin excitation is seen (Figure 1 in the main text) to depend on F⁰. As explained in the main text this difference comes from the use, in our DFT-based calculation, of a single Slater determinant (with fractional occupations and spin contamination) to represent the atomic state when compared to the multideterminant representation (with states with well-defined $\langle S^2 \rangle$ values) used in ligand-field theory.

In order to show this, we use Eq. 8 in the main text to calculate the 4-center intra-atomic integrals setting $F^2=F^4=0$. We can observe that the only non-zero integrals are:

$$\left(\chi_0 \chi_0 \left| \frac{1}{|r-r'|} \right| \chi_0 \chi_0 \right) = \left(\chi_0 \chi_1 \left| \frac{1}{|r-r'|} \right| \chi_0 \chi_1 \right) = F^0$$

From these integrals we can now use Eq. 7 to evaluate the energy of the different configurations used. A summary of these calculations can be found on the following table. We can see that the energy of the different atomic configurations has a different dependency on F^0 . Moreover, the high-spin low-spin energy difference in a d⁸ system (Ni²⁺) is $0.6F^0$ while in a d⁷ system (Ni³⁺) is $1.2F^0$, thus explaining how the slope in Figure 1 in the main text is double for Ni³⁺ than for Ni²⁺.

Table Energies of the d-shell in terms of F^0 , associated to different electronic configurations for in d-shell electronic occupation and spin and the orbital occupation associated to that state assuming a single Slater determinant representation.

<u> </u>			
Electronic configuration	Spin	Occupation per d orbital	State energy
d ⁷	High-spin	(1.0↑0.4↓)	33.2F ⁰
d ⁷	Low-spin	(0.8↑0.6↓)	$32.0F^{0}$
d^8	High-spin	(1.0↑0.6↓)	$42.2F^{0}$
<u>d</u> ⁸	Low-spin	$(0.8\uparrow 0.8\downarrow)$	41.6F ⁰

References:

- 1. Bersuker, I. B. *Electronic Structure and Properties of Transition Metal Compounds: Introduction to the Theory*; Wiley, 2010.
- 2. Griffith, J. S. The Theory of Transition-Metal Ions; Cambridge University Press, 1964