## Glassy GaS: transparent and unusually rigid thin films for visible to mid-IR memory applications

Andrey Tverjanovich,<sup>*a*</sup> Maxim Khomenko,<sup>*b*</sup> Sergei Bereznev,<sup>*c*</sup> Daniele Fontanari,<sup>*d*</sup> Anton Sokolov,<sup>*b*,*d*</sup> Takeshi Usuki,<sup>*e*</sup> Koji Ohara,<sup>*f*</sup> David Le Coq,<sup>*g*</sup> Pascal Masselin,<sup>*d*</sup> and Eugene Bychkov<sup>*b*,*d*\*</sup>

<sup>a</sup> Institute of Chemistry, St. Petersburg State University, 198504 St. Petersburg, Russia

<sup>b</sup> ILIT RAS – Branch of the FSRC 'Crystallography and Photonics' RAS, 140700 Shatura, Moscow Region, Russia

<sup>c</sup> Department of Materials and Environmental Technology, Tallinn University of Technology, 19086 Tallinn, Estonia

<sup>d</sup> Laboratoire de Physico-Chimie de l'Atmosphère, Université du Littoral Côte d'Opale, 59140 Dunkerque, France

<sup>e</sup> Faculty of Science, Yamagata University, Yamagata 990-8560, Japan

<sup>f</sup> Diffraction and Scattering Division, Japan Synchrotron Radiation Research Institute, Sayo-gun, Hyogo 679-5198, Japan

<sup>g</sup> Institut des Sciences Chimiques de Rennes, Université Rennes, 35000 Rennes, France

## **Electronic Supplementary Information**

Fig. S1. High-energy X-ray diffraction measurements at SPring-8 (Hyogo Prefecture, Japan).

**Fig. S2**. Experimental and simulated FPMD/PBEsol X-ray pair-distribution functions  $g_X(r)$  of glassy GaS.

**Fig. S3.** Mean-square displacements  $\langle r^2(t) \rangle$  of Ga and S species as a function of FPMD time *t* and temperature *T*.



**Fig. S1**. High-energy X-ray diffraction measurements at SPring-8 (Hyogo Prefecture, Japan): (a) glassy GaS in thin-walled silica capillary and empty capillary for background subtraction, (b) a vacuum chamber of the dedicated two-axis BL04B2 diffractometer, (c) a 7-detector setup of BL04B2 including four cadmium telluride detectors at low angles and three Ge diodes at high diffraction angles.



**Fig. S2**. Experimental (red) and simulated FPMD/PBEsol (blue) X-ray pair-distribution functions  $g_X(r)$  of glassy GaS. A typical problem of FPMD simulations using the general gradient approximation with classical PBEsol exchange-correlation functional resides in overestimation of the nearest neighbor interatomic distances resulting in a higher-*r* shift of the NN peak.



**Fig. S3**. Mean-square displacements  $\langle r^2(t) \rangle$  of Ga and S species as a function of FPMD time *t* and temperature *T*. Three characteristic regimes are clearly seen: (1) the ballistic regime below  $t \leq 30$  fs,  $\langle r^2(t) \rangle \propto t^2$ , (2) the intermediate regime related to vibrations and local diffusion,  $\langle r^2(t) \rangle \propto t^s$ , where  $0 \leq s < 1$ , and (3) the long-range diffusion motion at high *T* and *t*,  $\langle r^2(t) \rangle \propto t^1$ .