Electronic Supplementary Information

Role of spin-orbit coupling, Duschinsky rotation and displacement vector on the rate of intersystem crossing of benzophenone and its fused analog fluorenone : A time dependent correlation function based approach Pijush Karak and Swapan Chakrabarti*

Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India

* e-mail:swcchem@caluniv.ac.in

Contents	Page
1. Figure of optimized geometries of benzophenone and fluorenone without depicting H atom.	2
2. Co-ordinates of the optimized geometries of benzophenone and fluorenone .	2-9
3. Geometrical parameters of ground and excited electronic states of benzophenone and fluorenone.	10
4. Electronic states and character of the orbitals involved with the transition process of benzophenone and fluorenone.	11
5. Molecular orbitals associated with transition process for each molecule.	11
6. Nature of the real part of time dependent correlation function.	12
7. k_{ISC} data of S_1 - T_1 pathway of benzophenone.	14
8. Separation of correlation function into real and imaginary part at finite temparature .	15-18
9. Variation of k_{ISC} with temperature of benzophenone and fluorenone.	19

1. Figure of optimized geometries of benzophenone and fluorenone.

Fig. S1: Optimized structures of (a) benzophenone and (b) fluorenone without depicting the H atoms.

2. Co-ordinates of the optimized geometries of benzophenone and fluorenone .

Table S1: Coordinates of optimized geometry of S_0 state of benzophenone.

0.000000	3.703275	0.350895
0.621763	3.761979	-0.897266
1.040271	2.589250	-1.521073
0.820333	1.356462	-0.910880
0.191815	1.288440	0.338884
-0.200248	2.476477	0.970487
-0.320379	4.615593	0.841152
0.785375	4.720154	-1.377770
1.540954	2.633162	-2.481635
1.162323	0.450420	-1.395472
-0.656614	2.412904	1.950607
-1.040271	-2.589250	-1.521073
-0.621763	-3.761979	-0.897266
0.000000	-3.703275	0.350895
0.200248	-2.476477	0.970487
-0.191815	-1.288440	0.338884
-0.820333	-1.356462	-0.910880
-1.540954	-2.633162	-2.481635
-0.785375 .	-4.720154	-1.377770
0.320379	-4.615593	0.841152
0.656614	-2.412904	1.950607
-1.162323	-0.450420	-1.395472
0.000000	0.000000	1.085719
0.000000	0.000000	2.304918
	0.000000 0.621763 1.040271 0.820333 0.191815 -0.200248 -0.320379 0.785375 1.540954 1.162323 -0.656614 -1.040271 -0.621763 0.000000 0.200248 -0.191815 -0.820333 -1.540954 -0.785375 0.320379 0.656614 -1.162323 0.000000 0.000000 0.000000	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Table S2: Coordinates of optimized geometry of S_1 state of benzophenone.

С	-0.000000	3.717324	0.477178
С	0.461465	3.850816	-0.832900
С	0.784684	2.704437	-1.566508
С	0.644227	1.442818	-1.012142
С	0.145899	1.291301	0.304654
С	-0.156854	2.462452	1.045333
Η	-0.245902	4.599540	1.057734
Η	0.577525	4.832927	-1.275566
Η	1.169341	2.799171	-2.575997
Η	0.955516	0.573962	-1.575594
Η	-0.540017	2.368867	2.053441
С	-0.784684	-2.704437	-1.566508
С	-0.461465	-3.850816	-0.832900
С	-0.000000	-3.717324	0.477178
С	0.156854	-2.462452	1.045333
С	-0.145899	-1.291301	0.304654
С	-0.644227	-1.442818	-1.012142
Η	-1.169341	-2.799171	-2.575997
Η	-0.577525	-4.832927	-1.275566
Η	0.245902	-4.599540	1.057734
Η	0.540017	-2.368867	2.053441
Η	-0.955516	-0.573962	-1.575594
С	-0.000000	-0.000000	0.936989
0	-0.000000	-0.000000	2.252832

Table S3:	Coordinates	of optimized	geometry	of T_1	state	of benzoph	enone.

С	0.000000	3.721763	0.461498
С	0.526232	3.854396	-0.824419
С	0.886838	2.706879	-1.541855
С	0.728474	1.447144	-0.989573
С	0.161472	1.295747	0.299279
С	-0.181894	2.467137	1.022842
Η	-0.280297	4.604475	1.025521
Η	0.661498	4.836190	-1.262505
Η	1.311668	2.803004	-2.535028
Η	1.055380	0.572481	-1.537215
Η	-0.614453	2.365698	2.010018
С	-0.886838	-2.706879	-1.541855
С	-0.526232	-3.854396	-0.824419
С	-0.000000	-3.721763	0.461498
С	0.181894	-2.467137	1.022842
С	-0.161472	-1.295747	0.299279
С	-0.728474	-1.447144	-0.989573
Η	-1.311668	-2.803004	-2.535028
Η	-0.661498	-4.836190	-1.262505
Η	0.280297	-4.604475	1.025521
Η	0.614453	-2.365698	2.010018
Η	-1.055380	-0.572481	-1.537215
С	0.000000	0.000000	0.919339
Ο	0.000000	0.000000	2.243640

Table S4: Coordinates of optimized ge	eometry of T_2 state of benzophenone.
---------------------------------------	---

С	-0.000383	3.743808	0.667130
С	-0.000000	4.022076	-0.699065
С	0.000622	2.945012	-1.611294
С	0.000683	1.637798	-1.177437
С	0.000146	1.314843	0.213224
С	-0.000233	2.437186	1.119652
Η	-0.000719	4.555001	1.386484
Η	-0.000069	5.043407	-1.060231
Η	0.001125	3.149529	-2.676386
Η	0.001365	0.865771	-1.927195
Η	-0.000371	2.221891	2.175219
С	-0.000622	-2.945012	-1.611294
С	-0.000000	-4.022076	-0.699065
С	0.000383	-3.743808	0.667130
С	0.000233	-2.437186	1.119652
С	-0.000146	-1.314843	0.213224
С	-0.000683	-1.637798	-1.177437
Η	-0.001125	-3.149529	-2.676386
Η	0.000069	-5.043407	-1.060231
Η	0.000719	-4.555001	1.386484
Η	0.000371	-2.221891	2.175219
Η	-0.001365	-0.865771	-1.927195
С	0.000000	-0.000000	0.818131
0	0.000000	-0.000000	2.143615

Table S5: Coordinates of optimized geometry of S_0 state of fluorenone

С	1.391551	0.000033	3.026515
С	1.707718	0.000015	1.662161
С	0.668900	-0.000028	0.741582
С	-0.664894	-0.000053	1.188840
С	-0.981140	-0.000030	2.536605
С	0.066373	0.000012	3.463132
Η	2.192630	0.000068	3.757377
Η	2.744123	0.000041	1.343628
Η	-2.018219	-0.000053	2.852866
Η	-0.148882	0.000027	4.525367
С	1.707718	0.000015	-1.662161
С	1.391551	0.000033	-3.026515
С	0.066373	0.000012	-3.463132
С	-0.981140	-0.000030	-2.536605
С	-0.664894	-0.000053	-1.188840
С	0.668900	-0.000028	-0.741582
Η	2.744123	0.000041	-1.343628
Η	2.192630	0.000068	-3.757377
Η	-0.148882	0.000027	-4.525367
Η	-2.018219	-0.000053	-2.852866
С	-1.579437	-0.000124	0.000000
0	-2.790596	0.000149	0.000000

Table S6: Coordinates of optimized geometry of S_1 state of fluorenone.

С	-1.429431	-0.000194	2.987586
С	-1.742917	0.000103	1.648913
С	-0.687886	0.000250	0.704190
С	0.704003	0.000309	1.151458
С	0.988625	-0.000143	2.516485
С	-0.066528	-0.000275	3.416400
Η	-2.215314	-0.000360	3.733093
Η	-2.776380	0.000351	1.321472
Η	2.019593	-0.000246	2.849365
Η	0.138409	-0.000538	4.481547
С	-1.742917	0.000103	-1.648913
С	-1.429431	-0.000194	-2.987586
С	-0.066528	-0.000275	-3.416400
С	0.988625	-0.000143	-2.516485
С	0.704003	0.000309	-1.151458
С	-0.687886	0.000250	-0.704190
Η	-2.776380	0.000351	-1.321472
Η	-2.215314	-0.000360	-3.733093
Η	0.138409	-0.000538	-4.481547
Η	2.019593	-0.000246	-2.849365
С	1.606480	0.000206	0.000000
0	2.854764	-0.000032	0.000000

Table S7: Coordinates of optimized geometry of T_1 state of fluorenone.

С	0.000000	-1.426460	2.989101
С	-0.000001	-1.747490	1.660847
С	-0.000002	-0.694120	0.699114
С	0.000000	0.699669	1.155115
С	0.000003	0.993664	2.517808
С	0.000003	-0.052328	3.423800
Η	0.000001	-2.208647	3.738978
Η	-0.000001	-2.783587	1.341559
Η	0.000003	2.027525	2.843534
Η	0.000003	0.154160	4.488146
С	-0.000001	-1.747490	-1.660847
С	0.000000	-1.426460	-2.989101
С	0.000003	-0.052328	-3.423800
С	0.000003	0.993664	-2.517808
С	0.000000	0.699669	-1.155115
С	-0.000002	-0.694120	-0.699114
Η	-0.000001	-2.783587	-1.341559
Η	0.000001	-2.208647	-3.738978
Η	0.000003	0.154160	-4.488146
Η	0.000003	2.027525	-2.843534
С	-0.000005	1.603303	-0.000000
0	-0.000001	2.840755	-0.000000

Table S8:	Coordinates	of optimized	l geometry	of T_2	state of	fluorenone.
			• • • •			

С	0.000082	-1.388779	3.029347
С	0.000040	-1.704651	1.665281
С	-0.000007	-0.680379	0.733187
С	-0.000120	0.671895	1.171394
С	0.000035	0.990758	2.538104
С	0.000082	-0.055188	3.449395
Η	0.000139	-2.183345	3.765847
Η	0.000127	-2.740595	1.344498
Η	-0.000005	2.019242	2.874983
Η	0.000072	0.167252	4.510727
С	0.000040	-1.704651	-1.665281
С	0.000082	-1.388779	-3.029347
С	0.000082	-0.055188	-3.449395
С	0.000035	0.990758	-2.538104
С	-0.000120	0.671895	-1.171394
С	-0.000007	-0.680379	-0.733187
Η	0.000127	-2.740595	-1.344498
Η	0.000139	-2.183345	-3.765847
Η	0.000072	0.167252	-4.510727
Η	-0.000005	2.019242	-2.874983
С	-0.000387	1.519680	0.000000
Ο	0.000041	2.794117	0.000000

3. Geometrical parameters of ground and excited electronic states of benzophenone and fluorenone.

Table S9: Geometrical parameters of ground and excited electronic states of benzophenone and fluorenone. Angles, dihedral angles and bond lengths are in degree, degree and angstrom unit respectively.

geometrical parameters	$S_0(ext{expt.})$	S_0	S_1	T_1	T_2
$C_7 = 0_0$	1.94	1 91	1 21	1 32	1 32
$C_7 - C_9$	1.49	1.21 1.50	1.44	1.44	1.44
$C_{2} - C_{1}$	1.37	1.40	1.41	1.41	1.42
$C_{1} - C_{6}$	1.39	1.40	1.41	1.41	1.44
$< C_1 - C_7 - C_9$	122.4	120.3	128.1	129.1	130.5
$< C_2 - C_1 - C_7$	117.3	122.8	122.5	122.0	127.7
$< C_1 - C_7 - O_8$	120.0	119.8	115.9	115.4	114.7
$< C_2 - C_1 - C_7 - O_8$		148.6	156.3	153.0	179.9
$< C_6 - C_1 - C_7 - O_8$		27.0	20.4	23.1	0.022
$< C_1 - C_7 - C_9 - C_{14}$		31.13	23.6	26.9	0.025

geometrical parameters of fluorenone	$S_0(ext{expt.})$	S_0	S_1	T_1	T_2
$C_7 - 0_8$	1.21	1.21	1.24	1.23	1.27
$C_2 - C_{14}$	1.44	1.48	1.40	1.39	1.46
$C_{1} - C_{2}$	1.40	1.40	1.46	1.46	1.42
$C_9 - C_{10}$	1.40	1.40	1.46	1.46	1.42
$C_{1} - C_{7}$	1.38	1.38	1.39	1.39	1.40
$< C_1 - C_7 - C_9$	106.5	104.8	103.8	103.9	108.2
$< C_1 - C_7 - O_8$	126.7	127.5	128.08	128.03	125.8
$< C_3 - C_2 - C_{14}$	131.2	131.5	131.8	132.3	132.2
$< C_2 - C_1 - C_7$	109.1	109.03	110.2	109.9	107.9
$< C_3 - C_2 - C_{14} - C_{13}$	0.011	0.00	0.00	0.00	0.00
$< C_2 - C_1 - C_7 - O_8$	179.95	179.98	179.98	180.0	180.0
$< C_3 - C_2 - C_1 - C_7$	179.98	179.96	179.97	179.97	179.98

4. Electronic states and character of the orbitals involved with the transition process of benzophenone and fluorenone.

Table S10:Electronic states and character of the orbitals involved with the transition processof benzophenone and fluorenone.

system	electronic transition	transition orbital	nature of transition orbital
	$S_0 \to S_1$	$H-4 \rightarrow L$	$n-\pi^*$
benzophenone	$S_0 \to T_1$	$H-4 \rightarrow L$	$n-\pi^*$
	$S_0 \to T_1$	$H \rightarrow L$	$\pi - \pi^*$
	$S_0 \to T_2$	$H \rightarrow L$	$\pi - \pi^*$
	$S_0 \to S_1$	$H-4 \rightarrow L$	$n-\pi^*$
fl uo renone	$S_0 \to T_1$	$H \rightarrow L$	$\pi - \pi^*$
	$S_0 \to T_2$	$H \rightarrow L+1$	$\pi - \pi^*$
	$S_0 \to T_2$	$H-1 \rightarrow L$	$n-\pi^*$

5. Molecular orbitals associated with transition process for each molecule.

Fig. S3: <u>Molecular orbital pictures of fluorenone (isovalue=0.04)</u>

6. Nature of the real part of time dependent correlation function.

Fig. S5: Real part of the time dependent correlation function for the first 12 ps of benzophenone for S_1 - T_1 pathway.

Fig. S6: Real part of the time dependent correlation function for the first 50 fs of benzophenone for S_1 - T_1 pathway.

7. k_{ISC} data of S₁ - T₁ pathway of benzophenone.

Temparature(K)	Time interval(ps)	# points	$\eta(\mathbf{cm}^{-1})$	$\mathbf{k}_{\mathbf{ISC}}(s^{-1})$
0	20	20000	1.0	1.28×10^8
0	20	20000	2.0	2.41×10^8
0	20	20000	5.0	$3.55 imes 10^8$
0	20	20000	10.0	3.39×10^7
0	20	20000	100	2.74×10^8

Table S21: $\mathbf{k}_{\mathrm{ISC}}$ data of $S_1 \! \rightsquigarrow \! T_1$ pathway of benzophenone

8. SEPARATION OF THE INTERSYSTEM CROSSING RATE FORMULA INTO REAL AND IMAGINARY PART FOR FINITE TEMPARATURE CASE

The final form of intersystem crossing rate formula after using Mehler's generating formula is

$$\begin{aligned} \mathbf{k}_{\mathrm{ISC}} &= \frac{1}{Z} |\langle S_a | \hat{H}_{so} | T_b \rangle |^2 \int_{-\infty}^{\infty} \sqrt{\frac{det(\mathbf{S}_{\mathbf{S}}^{-1} \mathbf{S}_T^{-1} \mathbf{\Omega}_S \mathbf{\Omega}_T)}{det(\mathbf{J}^{\dagger} \mathbf{\Omega}_T \mathbf{B}_T \mathbf{J} + \mathbf{\Omega}_S \mathbf{B}_S) det(\mathbf{J}^{\dagger} \mathbf{\Omega}_T \mathbf{B}_T^{-1} \mathbf{J} + \mathbf{\Omega}_S \mathbf{B}_S^{-1})} \\ &\times e^{\mathbf{D}^{\dagger} \left(\mathbf{\Omega}_T \mathbf{B}_T \mathbf{J} (\mathbf{J}^{\dagger} \mathbf{\Omega}_T \mathbf{B}_T J + \mathbf{\Omega}_S \mathbf{B}_S)^{-1} \mathbf{J}^{\dagger} \mathbf{\Omega}_T \mathbf{B}_T - \mathbf{\Omega}_T \mathbf{B}_T \right) \mathbf{D}} \times e^{it\Delta E} dt, \end{aligned}$$
(1)

where the form of is generating function is

$$G(t) = \sqrt{\frac{det(\mathbf{S}_{S}^{-1}\mathbf{S}_{T}^{-1}\boldsymbol{\Omega}_{S}\boldsymbol{\Omega}_{T})}{det(\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{B}_{T}\mathbf{J} + \boldsymbol{\Omega}_{S}\mathbf{B}_{S})det(\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{B}_{T}^{-1}\mathbf{J} + \boldsymbol{\Omega}_{S}\mathbf{B}_{S}^{-1})}}_{\times e^{\mathbf{D}^{\dagger}\left(\boldsymbol{\Omega}_{T}\mathbf{B}_{T}\mathbf{J}(\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{B}_{T}\mathbf{J} + \boldsymbol{\Omega}_{S}\mathbf{B}_{S})^{-1}\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{B}_{T} - \boldsymbol{\Omega}_{T}\mathbf{B}_{T}\right)}}$$
(2)

where, $(\mathbf{S}_{S})_{ii} = \sinh\left((\beta - it)(\boldsymbol{\omega}_{S})_{i}\right), (\mathbf{S}_{T})_{ii} = \sinh(i(\boldsymbol{\omega}_{T})_{i}t), (\mathbf{B}_{T})_{ii} = \tanh\left(\frac{i(\boldsymbol{\omega}_{T})_{i}t}{2}\right), (\mathbf{B}_{S})_{ii} = \tanh\left(\frac{(\beta - it)(\boldsymbol{\omega}_{S})_{i}}{2}\right)$. These all are diagonal matrix. $(\mathbf{S}_{T})_{ii} = \sinh(i(\boldsymbol{\omega}_{T})_{i}t) = i\sin((\boldsymbol{\omega}_{T})_{i}t), (\mathbf{B}_{T})_{ii} = \tanh\left(\frac{i(\boldsymbol{\omega}_{T})_{i}t}{2}\right) = i\tan\left(\frac{(\boldsymbol{\omega}_{T})_{i}t}{2}\right),$ $(\mathbf{S}_{S})_{ii} = \sinh\left((\beta - it)(\boldsymbol{\omega}_{S})_{i}\right) = \sinh(2x)\cos(2y) - i\sin(2y)\cosh(2x)$ where $y = \frac{i(\boldsymbol{\omega}_{S})_{i}t}{2}, x = \frac{\beta(\boldsymbol{\omega}_{S})_{i}}{2}$ $(\mathbf{B}_{S})_{ii} = \tanh\left(\frac{(\beta - it)(\boldsymbol{\omega}_{S})_{i}}{2}\right) = \frac{\sinh(2x)}{\cosh(2x) + \cos(2y)} - i\frac{\sin(2y)}{\cosh(2x) + \cos(2y)}$

1 Simplification of the determinant part within square root

$$\begin{aligned} (\mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{B}_{T} \mathbf{J} + \boldsymbol{\Omega}_{S} \mathbf{B}_{S}) (\mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{B}_{T}^{-1} \mathbf{J} + \boldsymbol{\Omega}_{S} \mathbf{B}_{S}^{-1}) \\ &= \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{B}_{T} \mathbf{J} \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{B}_{T}^{-1} \mathbf{J} + \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{B}_{T} \mathbf{J} \boldsymbol{\Omega}_{S} \mathbf{B}_{S}^{-1} + \boldsymbol{\Omega}_{S} \mathbf{B}_{S} \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{B}_{T}^{-1} \mathbf{J} + \boldsymbol{\Omega}_{S} \mathbf{B}_{S} \boldsymbol{\Omega}_{S} \mathbf{B}_{S}^{-1} \\ &= \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{B}_{T} \boldsymbol{\Omega}_{T} \mathbf{B}_{T}^{-1} \mathbf{J} + \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{B}_{T} \mathbf{J} \boldsymbol{\Omega}_{S} \mathbf{B}_{S}^{-1} + \boldsymbol{\Omega}_{S} \mathbf{B}_{S} \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{B}_{T}^{-1} \mathbf{J} + \boldsymbol{\Omega}_{S}^{2} \\ &= \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T}^{2} \mathbf{J} + \boldsymbol{\Omega}_{S}^{2} + \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{B}_{T} \mathbf{J} \boldsymbol{\Omega}_{S} \mathbf{B}_{S}^{-1} + \boldsymbol{\Omega}_{S} \mathbf{B}_{S} \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{B}_{T}^{-1} \mathbf{J} \\ &= \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T}^{2} \mathbf{J} + \boldsymbol{\Omega}_{S}^{2} + \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} i \mathbf{b}_{T} \mathbf{J} \boldsymbol{\Omega}_{S} (\mathbf{A}' + i \mathbf{B}') + \frac{\boldsymbol{\Omega}_{S} (\mathbf{A} + i \mathbf{B}) \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T}^{-1} \mathbf{J}}{i}, \end{aligned} \tag{3}$$

where, $\mathbf{B}_{S} = \mathbf{A} + i\mathbf{B}, \mathbf{B}_{S}^{-1} = (\mathbf{A}' + i\mathbf{B}'), \mathbf{B}_{T} = i\mathbf{b}_{T}, \mathbf{b}_{T} = \tan(\frac{\omega_{T_{i}}t}{2}), \mathbf{B}_{T}^{-1} = -i\mathbf{b}_{T}^{-1}, \mathbf{b}_{T}^{-1} = \frac{1}{\tan(\frac{\omega_{T_{i}}t}{2})}.$

$$= \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T}^{2} \mathbf{J} + \boldsymbol{\Omega}_{S}^{2} + i \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T} \mathbf{J} \boldsymbol{\Omega}_{S} \mathbf{A}' + \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} i \mathbf{b}_{T} \mathbf{J} \boldsymbol{\Omega}_{S} i \mathbf{B}' + \frac{\boldsymbol{\Omega}_{S} \mathbf{A} \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T}^{-1} \mathbf{J}}{i} + \frac{\boldsymbol{\Omega}_{S} i \mathbf{B} \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T}^{-1} \mathbf{J}}{i}$$

$$= (\mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T}^{2} \mathbf{J} + \boldsymbol{\Omega}_{S}^{2} + \boldsymbol{\Omega}_{S} \mathbf{B} \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T}^{-1} \mathbf{J} - \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T} \mathbf{J} \boldsymbol{\Omega}_{S} \mathbf{B}') + i (\mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T} \mathbf{J} \boldsymbol{\Omega}_{S} \mathbf{A}' - \boldsymbol{\Omega}_{S} \mathbf{A} \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T}^{-1} \mathbf{J}).$$

$$\tag{4}$$

Therefore,

$$det(\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{B}_{T}\mathbf{J} + \boldsymbol{\Omega}_{S}\mathbf{B}_{S})det(\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{B}_{T}^{-1}\mathbf{J} + \boldsymbol{\Omega}_{S}\mathbf{B}_{S}^{-1}) = det(\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{B}_{T}\mathbf{J} + \boldsymbol{\Omega}_{S}\mathbf{B}_{S})(\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{B}_{T}^{-1}\mathbf{J} + \boldsymbol{\Omega}_{S}\mathbf{B}_{S}^{-1}) = det((\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}^{2}\mathbf{J} + \boldsymbol{\Omega}_{S}^{2} + \boldsymbol{\Omega}_{S}\mathbf{B}\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{b}_{T}^{-1}\mathbf{J} - \mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{b}_{T}\mathbf{J}\boldsymbol{\Omega}_{S}\mathbf{B}') + i(\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{b}_{T}J\boldsymbol{\Omega}_{S}\mathbf{A}' - \boldsymbol{\Omega}_{S}\mathbf{A}\mathbf{J}^{\dagger}\boldsymbol{\Omega}_{T}\mathbf{b}_{T}^{-1}\mathbf{J}))$$
(5)
= $det(\mathbf{C} + i\mathbf{E}),$

where,

$$\mathbf{C} = (\mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T}^{2} \mathbf{J} + \boldsymbol{\Omega}_{S}^{2} + \boldsymbol{\Omega}_{S} \mathbf{B} \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T}^{-1} \mathbf{J} - \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T} \mathbf{J} \boldsymbol{\Omega}_{S} \mathbf{B}'),$$

$$\mathbf{E} = (\mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T} \mathbf{J} \boldsymbol{\Omega}_{S} \mathbf{A}' - \boldsymbol{\Omega}_{S} \mathbf{A} \mathbf{J}^{\dagger} \boldsymbol{\Omega}_{T} \mathbf{b}_{T}^{-1} \mathbf{J}),$$

$$(\mathbf{C} + i \mathbf{E})^{-1} = \mathbf{C}' + i \mathbf{D}'.$$
(6)

Here,

$$(\mathbf{S}_{T})_{ii} = \sinh(i(\boldsymbol{\omega}_{T})_{i}t) = i\sin((\boldsymbol{\omega}_{T})_{i}t) = i\boldsymbol{s}_{T}, \boldsymbol{s}_{T} = \sin((\boldsymbol{\omega}_{T})_{i}t), (S_{T})_{ii}^{-1} = \frac{1}{i\sin((\boldsymbol{\omega}_{T})_{i}t)} = -i\boldsymbol{s}_{T}^{-1}.$$
 (7)

Now,

$$(\mathbf{S}_{S})_{ii} = \sinh\left((\beta - it)(\boldsymbol{\omega}_{S})_{i}\right) = \sinh(2x)\cos(2y) - i\sin(2y)\cosh(2x), (\mathbf{S}_{S})_{ii}^{-1} = \mathbf{F} + i\mathbf{M}.$$

$$(\mathbf{S}_{S})_{ii}^{-1}(\mathbf{S}_{T})_{ii}^{-1}\Omega_{S}\Omega_{T} = (\mathbf{F} + i\mathbf{M})(-i\mathbf{s}_{T}^{-1})\Omega_{S}\Omega_{T}$$

$$= -i\mathbf{F}\mathbf{s}_{T}^{-1}\Omega_{S}\Omega_{T} + \mathbf{M}\mathbf{s}_{T}^{-1}\Omega_{S}\Omega_{T} = \mathbf{P} + i\mathbf{Q}, \mathbf{P} = \mathbf{M}\mathbf{s}_{T}^{-1}\Omega_{S}\Omega_{T}, \mathbf{Q} = -\mathbf{F}\mathbf{s}_{T}^{-1}\Omega_{S}\Omega_{T}.$$
(8)

The simplified form of the determinant within square root becomes

$$\sqrt{\det(\mathbf{P} + i\mathbf{Q})\det(\mathbf{C}' + i\mathbf{D}')} = \sqrt{(U + iV)} = \sqrt{Amp(U + iV)e^{i\theta}}, \qquad (9)$$

$$= \sqrt{\sqrt{(U^2 + V^2)}e^{i\theta}} = \sqrt{\sqrt{(U^2 + V^2)}(\cos(\frac{\theta}{2}) + i\sin(\frac{\theta}{2}))},$$

where,

$$\theta = \tan^{-1}(\frac{V}{U}) \tag{10}$$

2 Simplification of the exponential part

 $e^{\mathbf{D}^{\dagger} \left(\mathbf{\Omega}_{T} \mathbf{B}_{T} \mathbf{J} (\mathbf{J}^{\dagger} \mathbf{\Omega}_{T} \mathbf{B}_{T} \mathbf{J} + \mathbf{\Omega}_{S} \mathbf{B}_{S})^{-1} \mathbf{J}^{\dagger} \mathbf{\Omega}_{T} \mathbf{B}_{T} - \mathbf{\Omega}_{T} \mathbf{B}_{T} \right) \mathbf{D}} \times e^{it \Delta E} dt$ Therefore,

$$D^{\dagger} \left(\Omega_{T} B_{T} \mathbf{J} (\mathbf{J}^{\dagger} \Omega_{T} B_{T} \mathbf{J} + \Omega_{S} B_{S})^{-1} \mathbf{J}^{\dagger} \Omega_{T} B_{T} - \Omega_{T} B_{T} \right) D$$

$$= D^{\dagger} \left(\Omega_{T} i \mathbf{b}_{T} \mathbf{J} (\mathbf{J}^{\dagger} \Omega_{T} i \mathbf{b}_{T} \mathbf{J} + \Omega_{S} (\mathbf{A} + i \mathbf{B}))^{-1} \mathbf{J}^{\dagger} \Omega_{T} i \mathbf{b}_{T} - \Omega_{T} i \mathbf{b}_{T} \right) D$$

$$= D^{\dagger} \left(-\Omega_{T} \mathbf{b}_{T} \mathbf{J} (\mathbf{J}^{\dagger} \Omega_{T} i \mathbf{b}_{T} \mathbf{J} + \Omega_{S} \mathbf{A} + i \Omega_{S} \mathbf{B})^{-1} \mathbf{J}^{\dagger} \Omega_{T} \mathbf{b}_{T} - \Omega_{T} i \mathbf{b}_{T} \right) D$$

$$= D^{\dagger} \left(-\Omega_{T} \mathbf{b}_{T} \mathbf{J} (\Omega_{S} \mathbf{A} + i (\mathbf{J}^{\dagger} \Omega_{T} \mathbf{b}_{T} \mathbf{J} + \Omega_{S} \mathbf{B}))^{-1} \mathbf{J}^{\dagger} \Omega_{T} \mathbf{b}_{T} - \Omega_{T} i \mathbf{b}_{T} \right) D$$

$$= D^{\dagger} \left(-\Omega_{T} \mathbf{b}_{T} \mathbf{J} (\mathbf{L} + i \mathbf{H}) \mathbf{J}^{\dagger} \Omega_{T} \mathbf{b}_{T} - \Omega_{T} i \mathbf{b}_{T} \right) D$$

$$= -D^{\dagger} \Omega_{T} \mathbf{b}_{T} \mathbf{J} \mathbf{L} \mathbf{J}^{\dagger} \Omega_{T} \mathbf{b}_{T} - i D^{\dagger} \Omega_{T} \mathbf{b}_{T} \mathbf{J} \mathbf{H} \mathbf{J}^{\dagger} \Omega_{T} \mathbf{b}_{T} - i D^{\dagger} \Omega_{T} \mathbf{b}_{T} D$$

$$= -D^{\dagger} \Omega_{T} \mathbf{b}_{T} \mathbf{J} \mathbf{L} \mathbf{J}^{\dagger} \Omega_{T} \mathbf{b}_{T} \mathbf{D} + i (-D^{\dagger} \Omega_{T} \mathbf{b}_{T} \mathbf{J} \mathbf{H} \mathbf{J}^{\dagger} \Omega_{T} \mathbf{b}_{T} \mathbf{D} - D^{\dagger} \Omega_{T} \mathbf{b}_{T} D)$$

$$= K_{1} + i K_{2},$$
(11)

where, $(\mathbf{\Omega}_S \mathbf{A} + i (\mathbf{J}^{\dagger} \mathbf{\Omega}_T \mathbf{b}_T \mathbf{J} + \mathbf{\Omega}_S \mathbf{B}))^{-1} = \mathbf{L} + i \mathbf{H}$ and the form of K_1 and K_2 are

$$K_1 = -\mathbf{D}^{\dagger} \mathbf{\Omega}_T \mathbf{b}_T \mathbf{J} \mathbf{L} \mathbf{J}^{\dagger} \mathbf{\Omega}_T \mathbf{b}_T \mathbf{D}, K_2 = (-\mathbf{D}^{\dagger} \mathbf{\Omega}_T \mathbf{b}_T \mathbf{J} \mathbf{H} \mathbf{J}^{\dagger} \mathbf{\Omega}_T \mathbf{b}_T \mathbf{D} - \mathbf{D}^{\dagger} \mathbf{\Omega}_T \mathbf{b}_T \mathbf{D}).$$
(12)

3 Complete form of correlation function and its separation into real and imaginary part

So the final form of correlation function becomes

 ϕ

$$\sqrt{\sqrt{(U^2 + V^2)}} (\cos \frac{\theta}{2} + i \sin \frac{\theta}{2}) \times e^{(K_1 + iK_2)} \times e^{it\Delta E_{ab}}$$

$$= \sqrt{\sqrt{(U^2 + V^2)}} (\cos \frac{\theta}{2} + i \sin \frac{\theta}{2}) \times e^{K_1} \times e^{i(K_2 + t\Delta E_{ab})}$$

$$= \sqrt{\sqrt{(U^2 + V^2)}} (\cos \frac{\theta}{2} + i \sin \frac{\theta}{2}) \times e^{K_1} \times (\cos \phi + i \sin \phi),$$

$$= \sqrt{\sqrt{(U^2 + V^2)}} e^{K_1} (\cos \frac{\theta}{2} \cos \phi + i \cos \frac{\theta}{2} \sin \phi + i \sin \frac{\theta}{2} \cos \phi - \sin \frac{\theta}{2} \sin \phi)$$

$$= \sqrt{\sqrt{(U^2 + V^2)}} e^{K_1} \cos(\frac{\theta}{2} + \phi) + i \sqrt{\sqrt{(U^2 + V^2)}} e^{K_1} \sin(\frac{\theta}{2} + \phi),$$

$$= (K_2 + t\Delta E_{ab}),$$
(13)

here the cosine term is a real function of time and sine term is an imaginary function of time.

4 Final form of ISC rate equation after separation into real and imaginary part

Therefore the form of intersystem crossing rate formula after separation into real and imaginary part becomes

$$\begin{aligned} \mathbf{k}_{\rm ISC} &= \frac{1}{Z} |\langle S_a | \hat{H}_{so} | T_b \rangle |^2 \int_{-\infty}^{\infty} \sqrt{\sqrt{(U^2 + V^2)}} e^{K_1} \cos(\frac{\theta}{2} + \phi) \\ &+ i \frac{1}{Z} |\langle S_a | \hat{H}_{so} | T_b \rangle |^2 \int_{-\infty}^{\infty} \sqrt{\sqrt{(U^2 + V^2)}} e^{K_1} \sin(\frac{\theta}{2} + \phi). \end{aligned}$$
(14)

9. Variation of k_{ISC} with temperature of benzophenone and fluorenone.

Fig. S7: Variation of k_{ISC} of benzophenone and fluorenone with temperature.

For benzophenone(S₁-T₂):

Ground state to ground state FC factor: 0.1625794967E-03 Average sum of Franck-Condon factors for the first state(S₁): 0.8931266883E-07

For fluorenone(S₁-T₁):

Ground state to ground state FC factor: 0.0441309348 Average sum of Franck-Condon factors for the first state(S₁): 0.1231235500E-05