Electronic Supplementary Information

Enhanced robustness of half-metallicity in VBr3 nanowires by strains and

transition metal doping

Xing Yu¹, Fanqiang Chen², Zhizhou Yu^{2*} and Yafei Li^{1*}

1 Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

2 Center for Quantum Transport and Thermal Energy Science, School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China

*Correspondence to: yuzhizhou@njnu.edu.cn (ZY) and liyafei@njnu.edu.cn (YL)

Fig. S1 (a) Spin-up and (b) spin-down currents of VBr₃ nanowires with tensile strains as a function of the applied bias. (c) Spin-up and (d) spin-down currents of VBr₃ with compressive strains as a function of the applied bias.

Fig. S2 Partial density of states (PDOS) of VBr₃ nanowires doped with (a) 1, (b) 3, and (c) 5 Co atoms. PDOS of VBr₃ nanowires doped with (d) 1, (e) 3, and (f) 5 Cr atoms. PDOS of VBr₃ nanowires doped with (g) 1, (h) 3, and (i) 5 Mo atoms.

Fig. S3 Partial density of states (PDOS) of VBr₃ nanowires doped with (a) Co, (b) Cr, and (c) Mo in two-probe systems.

Fig. S4 (a) Spin-up and (b) spin-down currents of Cr-doped VBr₃ nanowires. (c) Spin-up and (d) spin-down currents of Mo-doped VBr₃ nanowires.