Supplementary Information

Ion-specific Interactions at Calcite-Brine Interfaces:

A Nano-Scale Study of the Surface Charge Development and Preferential Binding of Polar Hydrocarbons

Mohammad Hasan Badizad^{1,2,†,∥}, Mohammad Mehdi Koleini^{3,*, ∥}, Hugh Christopher Greenwell^{4,¥},

Shahab Ayatollahi^{3,**}, Mohammad Hossein Ghazanfari², Mohsen Mohammadi¹

¹ Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran

² Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.

³ Sharif Upstream Petroleum Research Institute (SUPRI), Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.

⁴ Department of Earth Sciences, Durham University, Durham DH1 3LE, UK

** Corresponding Author; Email: shahab@sharif.edu

^{II} M.H. Badizad and M.M. Koleini contributed equally to this work.

⁺ Email: <u>m.badizad@ce.iut.ac.ir</u>, <u>mohammadhasan.badizad@che.sharif.edu</u> & <u>badizad@gmail.com</u>

^{*} Corresponding Author; Email: <u>mmkoleini@che.sharif.edu</u> & <u>mmkoleini@gmail.com</u>

Table S1 Force-field parameters for calcite, water and ions utilized in the current study.For relevant formulations refer to eqs. 1-4 in the main text.

Atomw	ise LJ parameters and	partial atomic charges fo	r CaCO₃			
Atom type	Partial charge	ϵ (kcal.mol ⁻¹)	σ (Å)			
<i>Ca_{calcite}</i>	+1.668	0.478	2.370			
$O_{calcite}$	+0.999	0.139	3.090			
Ccalcite	-0.889	0.088	3.823			
Atomwise LJ p	arameters and partial	atomic charges for water	(TIP3P model)			
O_w	-0.834	0.1521	3.1507			
H _w	0.417	0.0000	0.0000			
	Interatomic LJ parame	eters for CaCO₃ and water				
C _{calcite}	$O_{calcite}$	6.270	1.197			
$O_{calcite}$	$O_{calcite}$	0.000273	4.744		4.744	
Ca _{calcite}	O_w	0.270056	2.760			
$C_{calcite}$	O_w	0.116185	3.469			
O _{calcite}	O_w	0.146128	3.118		3.118	
O _{calcite}	H _w	6.97252e-6	4.497			
	Atomwise LJ pa	arameters for ions				
Na+	+1.000	0.0028	3.33			
Cŀ	-1.000	0.1178	4.42			
Mg ²⁺	+2.000	0.0621	2.11			
S _{sulfate}	+2.300	0.2000	3.55			
O _{sulfate}	-1.075	0.1553	3.25			
Atomwise	LJ parameters and par	tial atomic charges for be	nzoic acid¹			
Cphenyl	-0.1150	0.070	3.550			
H _{phenyl}	+0.1150	0.030	2.420			
Cphenyl, carboxylic	-0.1150	0.070	3.550			
C _{carboxvlic}	+0.6350	0.105	3.750			
OH _{carboxylic}	-0.5300	0.170	3.000		3.000	
<i>O</i> _{carboxvlic}	-0.4400	0.210	2.960			
HO _{carboxylic}	+0.4500	0.000	0.000		0.000	
	Bond stretch	ing parameters				
		0.155				
Bond type		Stiffness, V (keal $^{h-2}mol^{-1}$)	Bond length,	(Å)		
C	0	$\Lambda_b(\kappa c u A m o c)$	1 204			
	U _{calcite}	450.0	1.294			
C_{w}		450.0	0.9572			
C phenyl	(Tphenyl	460.0	1.080			
C	Cphenyl	469.0	1.400		1.400	
Cphenyl	Cphenyl, carboxylic	469.0	1.400			
phenyl, carboxylic		409.0	1.409			
C _{carboxylic}		656.0	1.250			
		450.0	1.364			
		553.U	U.96U		0.900	
Sulfate	O _{sulfate}	JZJ.J	1.487			
	Angie benai	ng parameters				
Ang	le type	C+:{{}}	0 m m l	(dag)		
5	- /	Stiffness,	Angle,	(uey)		

				K _b (kcal.d	eg ^{- 2} mol ^{- 1})					
C _{phenyl}	C _{phenyl, c}	carboxylic	C _{carboxylic} 63.0		12	120.0				
$C_{carboxylic}$	OH _{carboxvlic}		HO _{carboxylic}	35.0		11	113.0			
H _{phenyl}	Cphenyl		Cphenyl	35.0		12	120.0			
H _{phenyl}	Cphenyl		phenyl, carboxylic	35.0		12	120.0			
Hw	O _w		H _w	55.0		104	104.52			
C_{phenyl}	Cph	enyl	C _{phenyl}	63.0		12	120.0			
C_{phenyl}	C_{ph}	enyl C	phenyl, carboxylic	63.0		12	120.0			
$C_{phenyl, carboxylic}$	Ccarb	oxylic	O _{carboxylic}	80.0		12	120.4			
C _{phenyl} , carboxylic	Ccarb	oxylic	OH _{carboxylic}	70.0		12	120.0			
$O_{carboxylic}$	Ccarb	oxylic	OH _{carboxylic}	80.0		12	121.0			
O _{calcite}	$C_{calcite}$		O _{calcite}	221.3		12	120.0			
O _{sulfate}	S _{sul}	fate	O _{sulfate}	140.0		109	109.47			
Dihedral torsion parameters ²										
	Dihedral type			Κ1	<i>K</i> ₂	K ₃	Κ4			
H _{phenyl}	C _{phenyl}	C _{phenyl}	H _{phenyl}	0.0	7.25	0.0	0.0			
H _{phenyl}	C _{phenyl}	C _{phenyl}	C _{phenyl}	0.0	7.25	0.0	0.0			
H _{phenyl}	C _{phenyl}	C _{phenyl}	$C_{phenyl, \ carboxylic}$	0.0	7.25	0.0	0.0			
H _{phenyl}	C _{phenyl}	$C_{phenyl, \ carboxylic}$	$C_{carboxylic}$	0.0	7.25	0.0	0.0			
H _{phenyl}	C _{phenyl}	$C_{phenyl, \ carboxylic}$	C _{phenyl}	0.0	7.25	0.0	0.0			
Cphenyl	Cphenyl	C _{phenyl}	C _{phenyl}	0.0	7.25	0.0	0.0			
C_{phenyl}	C _{phenyl}	C _{phenyl}	$C_{phenyl, \ carboxylic}$	0.0	7.25	0.0	0.0			
C _{phenyl}	C _{phenyl}	$C_{phenyl, \ carboxylic}$	$C_{carboxylic}$	0.0	7.25	0.0	0.0			
C_{phenyl}	Cphenyl	$C_{phenyl, \ carboxylic}$	C _{phenyl}	0.0	7.25	0.0	0.0			
C _{phenyl} , carboxylic	Ccarboxylic	$OH_{carboxylic}$	<i>HO</i> _{carboxylic}	4.0	5.00	0.0	0.0			
O _{carboxylic}	Ccarboxylic	$OH_{carboxylic}$	<i>HO</i> _{carboxylic}	0.0	5.00	0.0	0.0			
OH _{carboxylic}	$C_{carboxylic}$	$C_{phenyl, \ carboxylic}$	C _{phenyl}	0.0	5.00	0.0	0.0			

¹ Atom types for a benzoic molecules are defined in the sketch below.

² Dihedral potential is calculated by LAMMPS through the expression: $E = \frac{1}{2}K_1(1 + \cos \phi) + \frac{1}{2}K_2(1 - \cos 2\phi) + \frac{1}{2}K_3(1 + \cos 3\phi) + \frac{1}{2}K_4(1 - \cos 4\phi)$

Supplementary Information

Figure S1 Initial configuration of the simulation ensemble from (left) XZ and (right) YZ views.

Figure S2 Final configuration of BA molecules in deionized water (DW) confined within the calcite slit.

Figure S3 Density profile of water and BA at the interface of calcite-DW.