Supporting Information

John Brown, ${ }^{a}$ Matthias Zeller, ${ }^{b}$ Sergiy V. Rosokha*

π-Dimer formation via long-distance multicenter bonding of cation-radicals of tetrathiafulvalene analogues
 ${ }^{\text {a Department of Chemistry, Ball State University, Muncie, IN, USA, } 47306}$
 ${ }^{\text {b }}$ Department of Chemistry Purdue University West Lafayette, IN, USA, 47907, E-mail: svrosokha@bsu.edu

Table of Content

> Pages
A) X-ray Structural Analysis S2
Crystallographic parameters and the details of the struc ture refinements (Table S1) S2
Average bond lengths of the cores of the cation-radicals (Table S2) S5
CCDC refcodes of the crystal structures contacting dimers (Table S3) S6
X-ray structures of cation-radic al salts (Figures S1- S6) S7
Solid-state EPR spectra (Figure S7) S9
B) UV-Vis measurements and their treatments
Details of the calculation of the equilibria constants and spectral characteristics S10-S11
Van't Hoff plots (Figures S8) S12
Experimental and calculated spectral characteristics of monomers and dimers (Table S4) S13
C) Quantum-mechanical computations
Energies of the dimers and monomers (Table S5) S14
Characteristics of the critical points (Table S6) S14
Atomic coordinates and ESP charges (Table S7) S15
Details of calculations of dispersion (Table S8) S19
Energies and geometries of the optimized neutral dimers (Table S9, Figure S10) S20

A) X-ray Structural Analysis

Single crystals of cation-radical salts of tetrathiafulvalene analogues with weakly-coordinating anions were crystallized by slow evaporation of solutions of these salts in dichloromethane/hexane (10:1) mixtures. Intensity data for X-ray crystallographic analysis were collected at 150 K with a Bruker AXS D8 Quest CMOS diffractometer using $\mathrm{Cu} K \alpha$ or Mo $\mathrm{K} \alpha$ radiation. The structures were solved by direct methods and refined by full matrix least-squares treatment. Crystallographic, data collection and structure refinement details, as well as geometric characteristics of the halogen bonds in these crystals are presented in Table S1 and in individual sections for each structure (after the table). Complete crystallographic data, in CIF format, have been deposited with the Cambridge Crystallographic Data Centre. CCDC 2011364-2011371, 2031395 and 2031396 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

Table S1. Crystallographic, data collection and structure refinement details

	(ET) $\mathrm{Me}_{12} \mathrm{CAR}$	(TTF) $\mathrm{Br}_{6} \mathrm{CAR}$	(TMTSF) $\mathrm{Br}_{6} \mathrm{CAR}$	(ET) BArF	(ET) $\mathrm{Br}_{6} \mathrm{CAR}$) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
Chemical formula	$\mathrm{C}_{13} \mathrm{H}_{36} \mathrm{~B}_{11} \cdot \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~S}_{8}$	$\mathrm{CH}_{6} \mathrm{~B}_{11} \mathrm{Br}_{6} \cdot \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~S}_{4}$	$\mathrm{CH}_{6} \mathrm{~B}_{11} \mathrm{Br}_{6} \cdot \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Se}_{4}$	$\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24} \cdot \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~S}_{8}$	$\begin{aligned} & \mathrm{CH}_{6} \mathrm{~B}_{11} \mathrm{Br}_{6} \cdot \mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~S}_{8} \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$
M_{r}	695.97	820.76	1064.46	1247.87	1086.00
Crystal system, space group	Triclinic, $P \overline{1}$	Monoclinic, $P 2_{1} / m$	Monoclinic, $P 2{ }_{1} /$ c	Monoclinic, $P 2{ }_{1} /$ c	Monoclinic, $P 2_{1} / c$
Temperature (K)	150	150	150	150	150
$a, b, c(\AA)$	$\begin{aligned} & \hline 14.9617(7), \\ & 15.7799(7), \\ & 17.0816(8) \end{aligned}$	$\begin{aligned} & 8.1423 \text { (6), } 13.7726 \\ & (10), 10.2776 \text { (7) } \end{aligned}$	$\begin{aligned} & \begin{array}{l} 8.8819 \\ (10), 15.0603 \\ (8) \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & 10.1692(3), 22.6293 \\ & (6), 20.9402 \text { (6) } \end{aligned}$	$\begin{array}{\|l\|} \hline 11.0183 \text { (9), } 11.7862 \\ (8), 26.111 \text { (2) } \end{array}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	$\begin{aligned} & 111.6576 \text { (14), } \\ & 101.2680(14), \\ & 94.4328 \text { (15) } \\ & \hline \end{aligned}$	92.209 (3)	92.345 (2)	91.6312 (13)	92.046 (3)
$V\left(\AA^{3}\right)$	3626.2 (3)	1151.68 (14)	2848.6 (3)	4816.8 (2)	3388.7 (4)
Z	4	2	4	4	4
Radiation type	$\mathrm{Cu} K \alpha$	Mo K α	Mo K α	$\mathrm{Cu} K \alpha$	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	4.67	10.82	13.57	4.61	7.77
Crystalsize (mm)	$0.33 \times 0.28 \times 0.11$	$0.31 \times 0.24 \times 0.11$	$0.32 \times 0.29 \times 0.13$	$0.15 \times 0.14 \times 0.01$	$0.16 \times 0.14 \times 0.11$
$T_{\text {min }}, T_{\text {max }}$	0.356, 0.754	0.419, 0.747	0.377, 0.747	0.472, 0.754	0.558, 0.747
No. of measured, ind and obs [I> $2 \sigma(I)]$ reflections	$\begin{aligned} & 61897,26183, \\ & 23382 \end{aligned}$	24760, 4530, 3233	90334, 10935, 8422	30941, 9829, 8435	36861, 12654, 8374
$R_{\text {int }}$	0.054	0.061	0.063	0.051	0.046
($\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.640	0.770	0.772	0.640	0.771
$\begin{aligned} & R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], \\ & w R\left(F^{2}\right), S \end{aligned}$	0.051, 0.148, 1.06	0.037, 0.082, 1.01	0.033, 0.085, 1.07	0.041, 0.115, 1.08	0.039, 0.079, 1.02
No. of reflections	26183	4530	10935	9829	12654
No. of param.	784	136	294	819	358
$\begin{aligned} & \Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-}\right. \\ & \left.{ }^{3}\right) \end{aligned}$	1.21, -0.63	1.33, -1.32	1.42, -1.59	0.46, -0.46	1.55, -1.49

Table S1 (cont). Crystallographic, data collection and structure refinement details

	(TMTTF) $\mathrm{Br}_{6} \mathrm{CAR}$	$\begin{aligned} & \text { (TMTSF)Me }{ }_{12} \mathrm{CAR} \cdot \frac{1}{3} \\ & \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	(TMTSF)BArF	(TMTSF)BArF. $1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$	(TMTTF) $\mathrm{Me}_{12} \mathrm{CAR}$
Chemical formula	$\begin{aligned} & \mathrm{CH}_{6} \mathrm{~B}_{11} \mathrm{Br}_{6} . \\ & \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~S}_{4} \end{aligned}$	$\begin{aligned} & 3\left(\mathrm{C}_{13} \mathrm{H}_{36} \mathrm{~B}_{11}\right) \cdot \\ & 3\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Se}_{4}\right) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24} . \\ & \mathrm{C}_{2} \mathrm{H}_{12} \mathrm{H}_{12} \mathrm{Se}_{4} \end{aligned}$	$\begin{array}{\|l\|} \hline 2\left(\mathrm{C}_{32} \mathrm{H}_{12} \mathrm{BF}_{24}\right) \cdot \\ 2\left(\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{Se}_{4}\right) \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{array}$	$\mathrm{C}_{13} \mathrm{H}_{36} \mathrm{~B}_{11} \cdot \mathrm{C}_{10} \mathrm{H}_{12} \mathrm{~S}$
M_{r}	876.86	2363.01	1311.26	2707.45	571.76
Crystalsystem, space group	Monoclinic, $P 2{ }_{1} / c$	Monoclinic, $P 2{ }_{1} / c$	Triclinic, $P \overline{1}$	Triclinic, $P \overline{1}$	Triclinic, $P^{-} 1$
Temperature (K)	150	150	150	150	150
$a, b, c(\AA)$	$\begin{aligned} & 9.0536(4), \\ & 20.5662(9), \\ & 15.0317(7) \end{aligned}$	$\begin{aligned} & 9.1263(13), 74.893 \\ & (11), 15.658 \text { (2) } \end{aligned}$	$\begin{aligned} & 10.4486(3), \\ & 14.0122(4), \\ & 15.7753 \text { (4) } \end{aligned}$	$\begin{aligned} & \hline 13.8745(9), \\ & 14.2009(8), \\ & 26.1484(15) \end{aligned}$	$\begin{aligned} & 9.0883(16), \\ & 9.2043(15), \\ & 10.2496(17) \end{aligned}$
$\alpha, \beta, \gamma\left({ }^{\circ}\right)$	96.2939 (17)	104.505 (10)	$\begin{aligned} & 89.036(1), 83.401 \\ & (1), 81.206(1) \end{aligned}$	$\begin{aligned} & 93.003(2), 99.251 \\ & (2), 106.843 \text { (2) } \end{aligned}$	$\begin{aligned} & 83.788(7), 76.145 \\ & (7), 85.976(7) \end{aligned}$
$V\left(\AA^{3}\right)$	2782.0 (2)	10361 (3)	2267.35 (11)	4840.1 (5)	826.7 (2)
Z	4	4	2	2	1
Radiation type	Mo $K \alpha$	$\mathrm{Cu} K \alpha$	Mo K α	Mo $K \alpha$	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	8.96	5.65	3.37	3.21	0.30
Crystalsize (mm)	$0.22 \times 0.20 \times 0.15$	$0.21 \times 0.06 \times 0.05$	$0.32 \times 0.11 \times 0.07$	$0.48 \times 0.41 \times 0.02$	$0.45 \times 0.21 \times 0.09$
$T_{\text {min }}, T_{\text {max }}$	0.513, 0.747	0.240, 0.390	0.598, 0.747	0.118, 0.209	0.687, 0.747
No. of measured, ind and obs [$I>$ $2 \sigma(I)$] reflections	$\begin{aligned} & 124275,10617, \\ & 8362 \end{aligned}$	$\begin{aligned} & 81535,21428, \\ & 18574 \end{aligned}$	$\begin{aligned} & 114138,17310, \\ & 12660 \end{aligned}$	$\begin{aligned} & 86594,24005, \\ & 14691 \end{aligned}$	68434, 6312, 5219
$R_{\text {int }}$	0.055	0.035	0.045	0.073	0.042
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.770	0.637	0.771	0.669	0.771
$\begin{aligned} & R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], \\ & w R\left(F^{2}\right), S \end{aligned}$	0.024, 0.051, 1.02	0.051, 0.124, 1.12	0.032, 0.083, 1.02	0.062, 0.187, 1.08	$\begin{array}{ll} 0.038, & 0.118, \\ 1.03 \end{array}$
No. of reflections	10617	21428	17310	24005	6312
No. of param.	312	1359	676	1591	180
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	1.30, -0.91	1.09, -1.08	0.88, -0.81	2.73, -2.15	0.35, -0.35

(ET) $\mathrm{Me}_{12} \mathrm{CAR}$:

The crystal under investigation was found to be non-merohedrally twinned. The orientation matrices for the two components were identified using the program Cell_Now, with the two components
being related by a 180 degree rotation around the reciprocal axis (-0.501). The two components were integrated using Saint and corrected for absorption using twinabs, resulting in the following statistics:
27547 data (11295 unique) involve domain 1 only, mean I/sigma 29.3
27464 data (11287 unique) involve domain 2 only, mean I/sigma 29.3
7018 data (3604 unique) involve 2 domains, mean I/sigma 51.0

The exact twin matrix identified by the integration program was found to be:
-0.69868-0.31707-0.84943
$-0.00036-1.000000 .00005$
$-0.602400 .634620 .69868$
The structure was solved using direct methods with only the non-overlapping reflections of component 1. The structure was refined using the hklf 5 routine with all reflections of component 1 (including the overlapping ones), resulting in a BASF value of 0.5117 (7).
The Rint value given is for all reflections and is based on agreement between observed single and composite intensities and those calculated from refined unique intensities and twin fractions (TWINABS (Sheldrick, 2012)).

The carbon atoms of the two carborane anions were refined as disordered over each two symmetry equivalent positions, disordered with boron atoms. The positions and the ADPs of the boron and carbon atoms were constrained to be each identical. Subject to these conditions the occupancy ratios refined to 0.61 (3) to $0.39(3)$, and to $0.59(3)$ to $0.41(3)$. Partial other locations of the C atoms (disordered with other boron atoms) cannot be positively excluded.

(ET)BArF:

The ethylene groups of the sulfur compound are disordered by inversion at carbon. The major and Minor moieties were restrained to have similar geometries. U^{ij} components of ADPs for disordered atoms closer to each other than $2.0 \AA$ were restrained to be similar. Subject to these conditions the occupancy ratio refined to $0.813(9)$ to $0.813(9)(\mathrm{C} 4 / \mathrm{C} 5)$ and $0.584(7)$ to $0.416(7)(\mathrm{C} 9 / \mathrm{C} 10)$.

Three of the CF3 groups are rotationally disordered. They were restrained to have similar geometries as another well-defined CF3 moiety. F18 and F18B were constrained to share a common ADP. U^{ij} components of ADPs for disordered atoms closer to each other than $2.0 \AA$ were restrained to be similar. Subject to these conditions the occupancy ratio refined to $0.694(10)$ to 0.306 (10) (C26), $0.354(10)$ to $0.646(10)(\mathrm{C} 33)$, and $0.878(4)$ to 0.122 (4) (C34).
(TMTSF)Me ${ }_{12} \mathrm{CAR} \cdot \frac{1}{3} \mathrm{CH}_{2} \mathrm{Cl}_{2}$:
The position of the C atoms in the carborane anions were located from difference density maps and occupancy refinements. No indication of C / B disorder was observed for all three anions.

One of the carborane anions is disordered by rotation in space. The two disordered moieties were restrained to have similar geometries as the other two not disordered anions. U ${ }^{i j}$ components of ADPs for disordered atoms closer to each other than $2.0 \AA$ were restrained to be similar. Subject to these conditions the occupancy ratio refined to 0.521 (4) to $0.479(4)$.

The methylene chloride solvate molecule is disordered over two orientations. The two disordered moieties were restrained to have similar geometries. U^{ij} components of ADPs for disordered atoms closer to each other than $2.0 \AA$ were restrained to be similar. Subject to these conditions the occupancy ratio refined to $0.526(6)$ to $0.474(6)$.
(TMTSF)BArF:
One CF3 group was refined as rotationally disordered. The two disordered moieties were restrained to have similar geometries as another not disordered CF_{3} group. U^{ij} components of ADPs for disordered
atoms closer to each other than $2.0 \AA$ were restrained to be similar. Subject to these conditions the occupancy ratio refined to $0.709(4)$ to 0.291 (4).

(TMTSF)BArF. $1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$:

8 of the 12 trifluoromethyl groups were refined as rotationally disordered. All disordered moieties were restrained to have similar geometries as another not disordered CF_{3} group. Major and minor C atoms of each group were constrained to have identic al ADPs. U ${ }^{\text {ij }}$ components of ADPs for disordered atoms closer to each other than $2.0 \AA$ were restrained to be similar. Subject to these conditions the major moiety occupancies refined to $0.732(7)(\mathrm{C} 35), 0.509(13)(\mathrm{C} 36 \mathrm{~B}), 0.558(11)(\mathrm{C} 43), 0.587(10)(\mathrm{C} 51), 0.660(12)$ (C59), 0.692(9) (C76), 0.572(7) (C83), and 0.578(9) (C84).

A methylene chloride molecule was refined as disordered. The two moieties were restrained to have similar geometries and $\mathrm{C}-\mathrm{Cl}$ distances were restrained to 1.72(2) Angstrom. U^{ij} components of ADPs for disordered atoms closer to each other than $2.0 \AA$ were restrained to be similar. Subject to these conditions the occupancy ratio refined to $0.598(6)$ to $0.402(6)$.

Table S2. Average bond lengths (in \AA) of the cores of the cation-radicals of TTF analogues in the salts with WCA. ${ }^{\text {a }}$

Salt	a	b	c	d
(TTF) $\mathrm{Br}_{6} \mathrm{CAR}$	1.391	1.721	1.723	1.340
(TMTSF)Br${ }_{6} \mathrm{CAR}$	1.382	1.860	1.885	1.342
(TMTSF)BArF	1.383	1.858	1.880	1.346
(TMTSF)BArF .1/2CH ${ }_{2} \mathrm{Cl}_{2}{ }^{\mathrm{a}}$	1.376	1.858	1.874	1.350
	1.381	1.859	1.868	1.363
(TMTSF)Me ${ }_{12} \mathrm{CAR}^{\mathrm{b}}$	1.374	1.858	1.885	1.325
	1.374	1.861	1.891	1.329
	1.377	1.861	1.894	1.339
(TMTTF)Me ${ }_{12} \mathrm{CAR}$	1.394	1.714	1.734	1.347
(TMTTF)Br${ }_{6} \mathrm{CAR}$	1.390	1.716	1.738	1.348
(ET)Br${ }_{6} \mathrm{CAR}$	1.394	1.718	1.741	1.354
(ET)BArF				
(ET)Me ${ }_{12} \mathrm{CAR} \mathrm{a}$	1.383	1.722	1.738	1.360
	1.394	1.719	1.339	1.361
	1.393	1.722	1.740	1.357

a) Values for two crystallographic ally independent moieties. b) Values for three crystallographic ally independent moieties

Table S3. Examples of the solid-state $\mathrm{D}_{2}{ }^{2+}$ dimers (and the corresponding interatomic $\mathrm{S} \ldots \mathrm{S}$ or $\mathrm{Se} \ldots \mathrm{Se}$ distances) in the CCDC database. ${ }^{\text {a }}$

TTF		TMTTF		ET		TMTSF	
REFCODE	S...S, Å	REFCODE	S...S, Å	REFCODE	S...S, \AA	REFCODE	Se...Se, \AA
SUJMOC	3.29	ALATEN	3.42	GOXZIF	3.38	XOSFAP	3.54
AMEPEO	3.36	DERLER10	3.38	MOTYOM	3.46	CAQJAF	3.75
CEBWUC	3.29	GEGJUX	3.42	MOTYUS	3.44	CAVNES	3.54
CEBXAJ	3.35	GIMDIP	3.33	BAVBOR	3.51	CEBXIR	3.63
CERDOT	3.28	HOJQED	3.32	BAVBUX	3.50	QABBEA	3.60
COYXEV	3.41	MESFLV03	3.49	BEJHOQ	3.41	VOGHOO	3.63
DEBRUY	3.28	NEDRET	3.43	CERDUZ	3.44		
DEBSAF	3.52	QUFSER	3.47	CERFAH	3.44		
DEBSEJ	3.32	SIZYAB	3.44	DASVID	3.32		
DEJHUW	3.37	WIWMIY	3.41	DASVOJ	3.36		
DOSSUC	3.34	ZIFDEZ	3.43	DASWAW	3.36		
HENRIC	3.45			EMOZAH	3.41		
IRISIM	3.51			IXOPUI	3.38		
KAJBOM	3.51			MAJYUR	3.54		
KODROK	3.35			MEXVIW	3.51		
LAYTAH	3.26			MISDUP	3.44		
LAYTEL	3.35			MISFAX	3.44		
MEXFOK	3.39			MUVLOF	3.43		
MUFZEU	3.36			PAVZUN	3.40		
NIBVEA	3.45			PAVZAK	3.40		
NIBVIE	3.43			PIJPOO	3.32		
NIBVOK	3.25			RIHFAP	3.49		
OHAXAX	3.36			SINROY	3.40		
PARRUX	3.36			SISVUL	3.55		
PORQAQ	3.33			XASCIE	3.37		
QIKWEM	3.35			XUBJIP	3.38		
QUSTOP	3.43			ZASCED	3.45		
RIFQAY02	3.32			ZIFDAV	3.50		
ROFXER	3.40			ZIWNIC	3.44		
SATDEW	3.40						
SICFOB	3.42						
TOBRUZ	3.33						
TTFIOD	3.35						
VENQOW	3.32						
WACLUI	3.41						
YEDVUY	3.37						
ZZZBWA	3.40						

a) CSD version 5.41 (November, 2019). Structures included in this table show at least one intradimer S...S or Se...Se contact shorter than the van der Waals separation minus $0.1 \AA$.

Figure S1. X-ray structure of (TTF) $\mathrm{Br}_{6} \mathrm{CAR}$ (left) and (TMTTF) $\mathrm{Br}_{12} \mathrm{CAR}$ salt showing separate cation radicals.

Figure S2. X-ray structure of (TMTSF)BArF. $1 / 2 \mathrm{CH}_{2} \mathrm{Cl}_{2}$ salt showing (TMTSF) ${ }_{2}{ }^{2+}$ dimers.

Figure S3. X-ray structure of (TMTSF) $\mathrm{Br}_{6} \mathrm{CAR}$ showing (TMTTF) 2^{2+} dimers.

Figure S4. Two types of dimers in the (TMTSF)Me ${ }_{12}$ CAR crystals in which monomers are shifted (parallel to the main axis) or rotated relative to each other.

Figure S5. X-ray structure of (ET)BArF salt show ing (ET) 2^{2+} dimer.

Figure S6. X-ray structure of (ET)Me ${ }_{12}$ CAR salt show ing two types of dyads, one π-dimer with lateral shift along the main axis and multiple contacts which are shorter than the van der Waals separation and another pair with shift perpendicular to the main axis and all contacts longer than the van der Waals separations.

Figure S7. Solid-state EPR spectra of (TMTSF) $\mathrm{Br}_{6} \mathrm{CAR}$ and $(\mathrm{TTF}) \mathrm{Br}_{6} \mathrm{CAR}$.

B) UV-Vis measurements and their treatments

The spectral characteristics of monomers and dimers and thermodynamic characteristics of dimerization were determined via UV-Vis measurements similarly to those in our earlier work.[1,2] UVVis measurements were carried out on a CARY 5000 spectrophotometer in a Dewar equipped with a quartz lens and the temperature was adjusted with an ethanol-liquid nitrogen bath $(\pm 0.5 \mathrm{~K})$. The solutions of the cation-radical salts for the UV-vis measurements were prepared in a Schlenk tube and transferred under an argon atmosphere into the quartz ($1-\mathrm{mm}$ path length) spectroscopic cell equipped with a Teflon valve fitted with Viton O-rings.

Spectral characteristics of the cation-radical monomers were established using solutions with low concentrations $(\sim 0.1 \mathrm{mM})$ of the cation-radical salts at room temperature. Under such conditions, the intensity of bands of monomers (at wavelengths λ_{M}) was directly proportional to the initial concentration of the cation-radic als (according to Beer-Lambert law). This indicated that concentrations of dimers in such solutions are negligible and allowed to determine extinction coefficients of the cation-radical monomers at the maxima of their absorption bands, ε_{M} (as well as at the maxima of absorption bands of the corresponding dimers, $\left.\varepsilon_{M}{ }^{D}\right)$.

At higher concentrations ($\geq 1 \mathrm{mM}$) and/or lower temperatures, new absorption bands appeared with maxima at λ_{D}. These band intensities increased substantially with the lowering of the temperature, and their growth was accompanied by the decrease of absorption intensity at λ_{M} (Figure 2). The temperaturedependent spectral changes observed in the solutions in acetonitrile and propanenitrile were reversible, and the existence of clear isosbestic points indic ated a quantitative interchange between two absorbing species.* The extinction coefficients ε_{D} for the dimers were determined from the temperature-modulated spectral changes (Figure 2), in which the decrease of absorbance at $\lambda_{M}\left(\Delta A_{M}\right)$ upon lowering the temperature was linearly related to the absorbance increase at $\lambda_{D}\left(\Delta A_{D}\right)$. Absorption intensities at these wavelength can be expressed as

$$
\begin{align*}
\mathrm{A}_{\mathrm{D}} & =\left(\mathrm{c}_{\mathrm{M}} \varepsilon_{\mathrm{M}}^{\mathrm{D}}+\mathrm{c}_{\mathrm{D}} \varepsilon_{\mathrm{D}}\right) l \tag{S1}\\
\mathrm{~A}_{\mathrm{M}} & =\left(\mathrm{c}_{\mathrm{M}} \varepsilon_{\mathrm{M}}+\mathrm{c}_{\mathrm{D}} \varepsilon_{\mathrm{D}}^{\mathrm{M}}\right) l \tag{S2}
\end{align*}
$$

where c_{M} is concentration of monomer, c_{D} is concentration of dimer, $\varepsilon_{M}{ }^{\mathrm{D}}$ and ε_{D} are extinction coefficients of monomer and dimers at λ_{D} and ε_{M} and $\varepsilon_{D}{ }^{M}$ are extinction coefficients of monomer and dimers at λ_{M}. Taking into account material balance

$$
\begin{equation*}
\mathrm{c}_{\mathrm{M}}+2 \mathrm{c}_{\mathrm{D}}=\mathrm{c}_{0} \tag{S3}
\end{equation*}
$$

[^0]where c_{0} is concentration of the salt in the solution, ε_{D} can be expressed from the changes of the absorption bands intensity at λ_{M} and λ_{D} as $:^{\dagger}$
\[

$$
\begin{equation*}
\varepsilon_{L}=-\left(2 \varepsilon_{M}-\varepsilon_{D}{ }^{M}\right) \times \Delta A_{L} / \Delta A_{M} \tag{S4}
\end{equation*}
$$

\]

Based on the values of $\varepsilon_{\mathrm{M}}{ }^{\lambda}$ and $\varepsilon_{\mathrm{D}}{ }^{\lambda}$ at a certain wavelength λ, concentration of the dimer can be calculated from the absorption intensity at this wavelength, A_{λ} as:

$$
\begin{equation*}
\mathrm{c}_{\mathrm{D}}=\left(\mathrm{A}_{\lambda}-\mathrm{c}_{0} \varepsilon_{\mathrm{M}}{ }^{\lambda}\right) /\left(\varepsilon_{\mathrm{D}}{ }^{\lambda}-2 \varepsilon_{\mathrm{M}}{ }^{\lambda}\right) \tag{S5}
\end{equation*}
$$

The concentrations of the dimers c_{D} were calculated at different temperatures and concentration of salts c_{0} from the absorption intensity at different wavelengths. While this equation is valid at any wavelength, most accurate evaluations of c_{D} could be done using wavelength with the largest difference of the extinction coefficients of the cation-radical monomers and dimers (typically, at the absorption band maxima of the monomer and the dimer). Specifically, values of c_{D} for $\mathrm{TTF}^{+\cdot}$ were established from the intensities of absorption of solutions at 437 nm and 730 nm , for TMTTF $^{+\cdot}$ at 652 nm and 759 nm , for TMTSF ${ }^{+\bullet}$ at 659 nm , and for $\mathrm{ET}^{+\cdot}$ at 484 nm and 850 nm . The values of c_{D} led to the equilibrium constant as:

$$
\begin{equation*}
\mathrm{K}=\mathrm{c}_{\mathrm{D}} /\left(\mathrm{c}_{0}-2 \mathrm{c}_{\mathrm{D}}\right)^{2} \tag{S6}
\end{equation*}
$$

The thermodynamic parameters for dimerization (Table 1) were calculated by the least-squares procedure from van't Hoff plots (linear dependence of $\ln \mathrm{K}$ on $1 / \mathrm{T}$), which are illustrated in Figure S5. The values of $\Delta \mathrm{H}^{\ominus}$ (from the slopes of the linear dependences) and $\Delta \mathrm{S}^{\ominus}$ (from the intersect of the linear dependences) were calculated as an average of several values (3-5) calculated at different values of c_{0} and λ. Values of $\Delta \mathrm{G}^{\ominus}(298)$ and their errors were calculated from values of K (obtained from the linear regression) measured for several series.

References.

[1] J.-M. Lü, S.V. Rosokha, J.K. Kochi, J. Am. Chem. Soc. 2003, 125, 12161.
[2] S.V. Rosokha, J.K. Kochi J. Am. Chem. Soc., 2007, 129, 828.

[^1]

Figure S8. Van't Hoff graphs for dimerization of cation-radicals measured in propanenitrile for: (A) 2.0 $\mathrm{mM}(\mathrm{TTF}) \mathrm{BArF}(\bullet), 2.1 \mathrm{mM}(\mathrm{TTF}) \mathrm{Br}_{6} \mathrm{CAR}(\bullet)$, and (TTF) $\mathrm{Me}_{12} \mathrm{CAR} 2.0 \mathrm{mM}(■)$; B) 1.4 mM (TMTTF)BArF (\bullet); C) $1.1 \mathrm{mM}(E T) B A r F(\bullet)$ and D) $1.3 \mathrm{mM}(\mathrm{TMTSF}) \operatorname{BArF}(\bullet)$.
Results of the regression analysis of the series:a

	Intercept	Standard Error	X variable(Slope)	Standard Error
(TTF)BArF	-16.14	0.81	4444	171
(TTF)Br ${ }_{6}$ CAR	-15.46	0.82	4297	179
(TTF)Me 12 CAR	-15.56	0.87	4313	180
(TMTTF)BArF	-22.41	1.26	6174	274
(ET)BArF	-15.98	0.42	5138	92
(TMTSF)BArF	-10.04	0.70	4103	163

a) Note that errors in Table 2 were evaluated from the variations of values in 3-5 independently measured series with the same cation radicals (taken with the same or different counter-ions).

Table S4. Experimental and calculated spectral characteristics of monomers and dimers the $\mathrm{D}^{+\cdot}$ monomers and $\mathrm{D}_{2}{ }^{2+}$ dimers resulting from the TD DFT UM06L/def2TZVPP computations $\left(\mathrm{CH}_{3} \mathrm{CN}\right)$. ${ }^{\text {a }}$

$\mathrm{D}^{+\cdot}$		$\lambda_{\mathrm{M}}, \mathrm{nm}(\log \varepsilon)$	$\lambda_{\mathrm{D}}, \mathrm{nm}(\log \varepsilon)$
$\mathrm{TTF}^{+\bullet}$	Exp	$581(3.5) 436(4.2)$	$733(4.3) 520(4.0), 396(4.4)$
	Calc	$523(3.5), 390(4.2)$	$700(4.1), 482(3.7), 349(4.4)$
TMTTF $^{+}$	Exp	$654(3.8), 462(4.1)$	$779(4.0), 573(4.0), 412(4.3)$
	Calc	$602(3.8), 403(4.2)$	$805(4.0), 537(4.0), 367(4.4)$
TMTSF $^{+\cdot}$	Exp	$782(3.8), 451(3.9)$	$830(4.2), 649(4.3), 391(4.2)$
	Calc	$690(3.8), 402(4.1)$	$890(4.0), 588(4.1), 355(3.7)$
ET $^{+}$	Exp	$954(4.0), 452(4.0)$	$854(4.4), 440(4.2)$
	Calc	$1042(4.0), 436(4.0)$	$1123(4.0), 900(4.3)$

Figure S9. Correlation between experimental and calculated energies of electronic transitions in monomers (blue) and dimers (red) of cation-radic als of tetrathiafulvalene analogues.

Quantum-mechanical computations.

Table S5. Energies (in Hartree, unless noted otherw ise) of the $\mathrm{D}^{+\bullet}$ monomers and $\mathrm{D}_{2}{ }^{2+}$ dimers resulting from the UM06L/def2TZVPP computations.

		TTF	TMTTF	TMTSF	ET	
	In acetonitrile					
$\mathrm{D}^{+\bullet}$	E	-1823.69255	-1981.00771	-9994.09552	-3571.36553	
	ZPE	0.08341	0.19413	0.18922	0.16027	
	G	-1823.64689	-1980.86104	-9993.95882	-3571.25603	
$\mathrm{D}_{2}{ }^{2+}$ (singlet)	E	-3647.40374	-3962.04039	-19988.21966	-7142.7626	
	ZPE	0.16881	0.39267	0.38091	0.32264	
	G	-3647.28466	-3961.71134	-19987.91089	-7142.51056	
	BSSE	0.00192	0.00239	0.00325	0.00365	
$\mathrm{D}_{2}{ }^{2+}$ (triplet $)^{\mathrm{a}}$	E	-3647.39116	-3962.02966	-19988.20954	-7142.75166	
$\mathrm{D}_{2}{ }^{2+}$ (triplet) $)^{\mathrm{b}}$	E	-3647.37934	-3962.01958	-19988.20321	-7142.74846	
In propanenitrile						
	E	-1823.69211	-1981.00733	-9994.09516	-3571.36515	
	DPE	0.18934	0.19376	0.18934	0.16025	
	G	-1823.60866	-1980.86303	-9993.95645	-3571.25582	
$\mathrm{D}_{2}{ }^{2+}$ (singlet)	E	-3647.40238	-3962.03921	-19988.21858	-7142.76146	
	ZPE	0.16876	0.39092	0.38122	0.32269	
	G	-3647.28333	-3961.70845	-19987.90784	-7142.50919	
$\Delta \mathrm{E}_{\text {For }},(\mathrm{kcal} / \mathrm{mol})$	-9.0	-11.8	-14.1	-15.9		

a) Optimized triplet state; b) Energy of triplet in the geometry of the optimized singlet.

Table S6. Characteristics of the critical points along $\mathrm{S} \ldots \mathrm{S}$ (or $\mathrm{Se} \ldots \mathrm{Se}$) and $\mathrm{C} \ldots \mathrm{C}$ bond paths. ${ }^{\text {a }}$

	Bond path	ρ	$\nabla^{2} \rho$	$\mathrm{H}(\mathrm{r})$
TTF	$\mathrm{S} \ldots \mathrm{S}$	$1.08 \mathrm{E}-02$	$2.81 \mathrm{E}-02$	$1.22 \mathrm{E}-03$
	$\mathrm{C} \ldots \mathrm{C}$	$5.70 \mathrm{E}-03$	$1.62 \mathrm{E}-02$	$8.17 \mathrm{E}-04$
TMTTF	$\mathrm{S} \ldots \mathrm{S}$	$1.09 \mathrm{E}-02$	$2.83 \mathrm{E}-02$	$1.18 \mathrm{E}-03$
	$\mathrm{C} \ldots \mathrm{C}$	$6.38 \mathrm{E}-03$	$1.74 \mathrm{E}-02$	$8.61 \mathrm{E}-04$
TMTSF	$\mathrm{Se} \ldots \mathrm{Se}$	$9.93 \mathrm{E}-03$	$2.08 \mathrm{E}-02$	$7.04 \mathrm{E}-04$
	$\mathrm{C} \ldots \mathrm{C}$	$5.78 \mathrm{E}-03$	$1.58 \mathrm{E}-02$	$7.41 \mathrm{E}-04$
ET	$\mathrm{S} \ldots \mathrm{S}$	$7.94 \mathrm{E}-03$	$2.40 \mathrm{E}-02$	$1.25 \mathrm{E}-03$
	$\mathrm{C} \ldots \mathrm{C}$	$8.40 \mathrm{E}-03$	$2.36 \mathrm{E}-02$	$8.78 \mathrm{E}-04$

a) ρ is the electron density, $\nabla^{2} \rho$ is Laplacian of electron density, $\mathrm{H}(\mathrm{r})$ is the total energy density (in a.u.).

Table S7. Atomic coordinates (in \AA) and ESP charges (in a.u.) which were used in calculations of electrostatic interaction between monomers in π-dimers.
$(\mathrm{TTF}) 2^{2+}$

| Atom | Coordinates | | | |
| :--- | ---: | ---: | ---: | ---: | Charge S | S | 1.77443 | 1.543355 | 1.451333 | 0.176315 |
| :--- | ---: | ---: | ---: | ---: |
| S | 1.662055 | -1.70186 | -1.45135 | 0.179324 |
| C | 1.863157 | 3.065277 | 0.670903 | -0.1335 |
| C | 1.732177 | 0.616628 | 0 | -0.02923 |
| C | 1.6829 | -0.77431 | 0 | -0.03569 |
| C | 1.656102 | -3.22585 | -0.67104 | -0.13264 |
| S | 1.77443 | 1.543355 | -1.45133 | 0.176315 |
| S | 1.662055 | -1.70186 | 1.451349 | 0.179324 |
| C | 1.863157 | 3.065277 | -0.6709 | -0.1335 |
| C | 1.656102 | -3.22585 | 0.671039 | -0.13264 |
| H | 1.654313 | -4.10762 | -1.29162 | 0.221056 |
| H | 1.654313 | -4.10762 | 1.291616 | 0.221056 |
| H | 1.91212 | 3.945945 | 1.291257 | 0.221582 |
| H | 1.91212 | 3.945945 | -1.29126 | 0.221582 |
| S | -1.77455 | -1.5433 | -1.45133 | 0.1714 |
| C | -1.73227 | -0.61658 | 0 | -0.01583 |
| C | -1.86346 | -3.06521 | -0.6709 | -0.13152 |
| S | -1.66203 | 1.701894 | -1.45135 | 0.176791 |
| C | -1.68295 | 0.774357 | 0 | -0.03288 |
| C | -1.65588 | 3.225882 | -0.67104 | -0.13474 |
| S | -1.66203 | 1.701894 | 1.45135 | 0.176791 |
| C | -1.65588 | 3.225882 | 0.67104 | -0.13474 |
| S | -1.77455 | -1.5433 | 1.451332 | 0.1714 |
| C | -1.86346 | -3.06521 | 0.670903 | -0.13152 |
| H | -1.6539 | 4.10766 | 1.291609 | 0.222814 |
| H | -1.6539 | 4.10766 | -1.29161 | 0.222814 |
| H | -1.91255 | -3.94588 | 1.291241 | 0.219929 |
| H | -1.91255 | -3.94588 | -1.29124 | 0.219929 |

(TMTTF) 2^{2+}

Atom	Coordinates			Charge
S	1.114266	-1.92088	1.363453	0.066902
S	-2.25196	-1.41297	-1.3401	0.084711
C	3.813585	-2.42572	1.318492	-0.41408
H	4.717437	-2.20834	0.757299	0.15116
H	3.853328	-3.46942	1.627515	0.165997
H	3.823635	-1.82378	2.224483	0.161039
C	2.601042	-2.15897	0.499572	0.123673

C	0.119183	-1.71288	-0.02081	-0.02288
C	-1.25512	-1.52423	0.054651	-0.06955
C	-3.74141	-1.19081	-0.49993	0.186745
C	-4.99973	-1.09627	-1.28965	-0.48845
H	-5.64292	-0.31284	-0.89421	0.16393
H	-5.55501	-2.03183	-1.23511	0.176337
H	-4.81394	-0.88467	-2.33793	0.187359
S	0.95252	-1.8037	-1.51947	0.051471
S	-2.09938	-1.37366	1.539478	0.098846
C	3.632379	-2.29781	-1.82029	-0.38723
H	4.590199	-2.35072	-1.31382	0.130656
H	3.504264	-3.21724	-2.3893	0.168617
H	3.66769	-1.48124	-2.54068	0.150935
C	2.523621	-2.11326	-0.84959	0.126216
C	-3.67091	-1.18709	0.857017	0.145293
C	-4.83782	-1.10761	1.775974	-0.48571
H	-5.61535	-0.47471	1.356152	0.155479
H	-5.26879	-2.09686	1.927533	0.183044
H	-4.56692	-0.71625	2.752105	0.188893
S	-0.95225	1.804294	-1.52185	0.042966
C	-0.11896	1.714813	-0.02311	-0.00603
C	-2.52343	2.114117	-0.85229	0.104336
C	-3.63221	2.297396	-1.82322	-0.32215
H	-4.59009	2.350238	-1.31685	0.112062
H	-3.66704	1.480176	-2.5429	0.133951
H	-3.50449	3.216405	-2.39299	0.153974
S	2.252089	1.413461	-1.34221	0.082914
C	1.255314	1.526001	0.052491	-0.05792
C	3.741353	1.190867	-0.5019	0.151478
C	4.999617	1.09483	-1.29149	-0.43826
H	5.642793	0.312185	-0.89447	0.151695
H	5.5549	2.030506	-1.23886	0.167083
H	4.813783	0.881108	-2.33932	0.175602
S	2.099475	1.375995	1.537404	0.08691
H	3.670819	1.18789	0.855049	0.161574
C	-3.82284	1.826167	2.22209	0.175045
C	4.837626	1.107629	1.774034	-0.46657
H	5.613479	0.471871	1.355446	0.149256
H	5.271233	2.096075	1.923339	0.176552
H	4.565918	0.718958	2.751003	0.185045
S	-1.11406	1.923861	1.360963	0.05839
C	-2.60089	2.160777	0.496819	0.146617
H	-3.81361	2.427253	1.315539	-0.46616
H	-4.71724	2.208055	0.754717	0.165747
H	1.623439	0.176495		
H				

(TMTSF) 2^{2+}

Atom	Coordinates			
Se	-2.59466	-1.32889	-1.53819	Charge
Se	-2.59471	-1.24449	1.593765	0.188444
C	-1.59632	-1.47578	0.032918	-0.16884
C	-4.19311	-0.88712	0.694834	0.125145
C	-4.19366	-0.92654	-0.66044	0.094237
C	-5.41495	-0.63651	1.513527	-0.49695
H	-5.19451	-0.52113	2.570476	0.190028
H	-6.11928	-1.46131	1.410464	0.182612
H	-5.92425	0.265709	1.177763	0.161733
C	-5.4163	-0.73247	-1.49258	-0.45673
H	-5.18908	-0.59902	-2.54609	0.179352
H	-5.97615	0.138694	-1.15688	0.151719
H	-6.07769	-1.59413	-1.40486	0.175443
Se	0.762039	-1.85714	1.609638	0.123199
Se	0.751813	-1.94243	-1.53148	0.121275
C	-0.23707	-1.71661	0.037356	-0.07045
C	2.3801	-2.25267	-0.63105	0.065883
C	2.385314	-2.21262	0.715763	0.081091
C	3.546512	-2.51931	-1.51594	-0.32074
H	3.657135	-1.73897	-2.26989	0.137398
H	4.470813	-2.574	-0.94983	0.12124
H	3.427909	-3.45993	-2.05187	0.148624
C	3.558968	-2.42907	1.605403	-0.37832
H	3.476642	-3.37231	2.143839	0.160264
H	4.487079	-2.44644	1.04262	0.136098
H	3.636234	-1.64265	2.35651	0.154871
Se	2.594628	1.2442	-1.59377	0.181971
Se	2.594583	1.328672	1.538179	0.182954
Se	-0.75191	1.942096	1.53147	0.119442
Se	-0.76212	1.856906	-1.60965	0.120724
C	4.193034	0.886871	-0.69483	0.121248
C	4.193594	0.926329	0.660438	0.105231
C	1.596236	1.475504	-0.03293	-0.13979
C	0.236985	1.716325	-0.03737	-0.07935
C	-2.38018	2.252404	0.631042	0.079158
C	-2.38539	2.212414	-0.71578	0.071858
C	5.414883	0.636229	-1.51351	-0.52263
H	5.194457	0.520907	-2.57047	0.200178
H	6.119263	1.460973	-1.41039	0.18919
H	5.924099	-0.26605	-1.17778	0.167833
5.416239	0.732255	1.492569	-0.48203	
H	6.077785	1.593769	1.404569	0.181178
H				

H	5.189062	0.599139	2.546125	0.188287
H	5.975908	-0.13911	1.157072	0.157551
C	-3.54659	2.519047	1.515936	-0.35051
H	-3.65724	1.738686	2.269858	0.143669
H	-3.42796	3.459643	2.051903	0.156042
H	-4.47089	2.573791	0.949821	0.127899
C	-3.55902	2.429006	-1.60542	-0.35392
H	-3.47645	3.372167	-2.14397	0.154874
H	-3.6365	1.642532	-2.35645	0.148332
H	-4.48711	2.446717	-1.04262	0.130138

$(\mathrm{ET})_{2}{ }^{2+}$

Atom	Coordinates			
S	-0.73568	-1.70472	-1.48261	Charge
S	2.383085	-1.44858	1.526473	0.086029
C	-2.29652	-1.93597	-0.75971	-0.00693
C	0.130743	-1.59817	0.002863	-0.01396
C	1.507213	-1.4972	0.041891	0.016559
C	3.955008	-1.31636	0.803017	0.023799
S	-0.82947	-1.72022	1.428871	0.088396
S	2.476911	-1.5101	-1.3792	0.066892
C	-2.34383	-1.94009	0.60402	0.06783
C	3.990861	-1.31809	-0.5634	0.043111
S	-3.60081	-2.11272	-1.88563	0.006336
S	-3.71271	-2.14716	1.648138	-0.03387
S	5.419055	-1.24018	-1.5478	-0.00406
S	5.265127	-1.22254	1.932695	-0.0473
C	6.555443	-2.0847	-0.41199	-0.26543
H	6.206099	-3.10226	-0.2615	0.143932
H	7.497407	-2.12334	-0.95323	0.205808
C	6.75123	-1.34339	0.883008	0.061305
H	7.134862	-0.34173	0.710453	0.073909
H	7.463263	-1.8702	1.515554	0.12434
C	-4.85588	-2.8425	-0.80543	-0.30096
H	-5.75864	-2.82334	-1.41181	0.229911
H	-4.59816	-3.87966	-0.61128	0.176802
C	-5.07797	-2.06041	0.464555	-0.12016
H	-5.92047	-2.46755	1.0194	0.201916
H	-5.29047	-1.01572	0.252003	0.069899
S	0.831459	1.765114	1.361133	0.099434
C	-0.13056	1.588786	-0.05945	-0.03325
C	2.344924	1.953072	0.526749	0.073299
S	-2.36445	1.487202	1.485748	0.05191
C	-1.50695	1.490748	-0.00408	0.010728

C	-3.94103	1.350617	0.788602	0.117944
S	-2.49443	1.465648	-1.4186	0.125939
C	-4.00763	1.32729	-0.57718	-0.05243
S	0.73446	1.637947	-1.54728	0.078469
C	2.297022	1.892378	-0.83566	0.00677
S	-5.40222	1.228232	-1.60239	-0.02261
S	-5.2826	1.313112	1.888843	-0.01464
S	3.604902	2.01422	-1.96673	0.009411
S	3.710758	2.211314	1.560905	-0.06761
C	-6.79691	1.311917	-0.43406	0.060819
H	-7.5808	1.793096	-1.01569	0.124988
H	-7.12436	0.30138	-0.20548	0.082443
C	-6.5226	2.095589	0.821539	-0.32004
H	-7.41978	2.12651	1.434605	0.227168
H	-6.21371	3.116535	0.615938	0.160822
C	5.077627	2.062671	0.385467	-0.0285
H	5.922324	2.488099	0.923228	0.175164
H	5.284144	1.009754	0.210658	0.047717
C	4.860714	2.789722	-0.91813	-0.27358
H	5.763962	2.740361	-1.52197	0.207117
H	4.605056	3.835039	-0.77136	0.159892

Table S8. Energies for calculation of dispersion in dimers of tetrathiafulvalene analogues a

E(MP2), Hartrees		TTF	TMTTF	TMTSF	ET
	Dimers	-3642.432432	-3956.28908	-19975.4634	-7133.21
	Monomers	-1821.189057	-1978.10904	-9987.68983	-3566.56
$\Delta \mathrm{E}(\mathrm{MP} 2), \mathrm{kcal} / \mathrm{mol}$ E(HF), Hartrees		-34.08486503	-44.5472165	-52.5172571	-56.6146
	Dimers	-3639.093277	-3951.50887	-19969.8391	-7127.07
	Monomers	-1819.574857	-1975.78646	-9984.9526	-3563.58
$\Delta \mathrm{E}(\mathrm{HF}), \mathrm{kcal} / \mathrm{mol}^{\mathrm{b}}$		35.41495168	40.1996203	41.4911409	53.63989
EDIS, $\mathrm{kca} / \mathrm{mol}^{\text {c }}$		69.5	84.7	94.0	110.3
E(B97D), Hartrees	Dimers	-3647.241131	-3961.69681	-19998.1228	-7142.54
	Monomers	-1823.610695	-1980.83461	-9999.04389	-3571.25
$\Delta \mathrm{E}$ (B97D), $\mathrm{kcal} / \mathrm{mol}$		-12.3872265	-17.3089412	-22.0011415	-16.9808
E(B98), Hartrees	Dimers	-3646.970313	-3961.5093	-19988.6895	-7141.95
	Monomers	-1823.486399	-1980.75772	-9994.34856	-3570.98
$\Delta \mathrm{E}(\mathrm{B} 98), \mathrm{kcal} / \mathrm{mol}$		1.560059125	3.8470268	4.775024	10.21593
$\mathrm{E}_{\text {DIS }}, \mathrm{kcal} / \mathrm{mol}^{\text {d }}$		13.9	21.2	26.8	27.2

a) Energies obtained from single-point calculations using indic ated method and def2tzvpp basis set using coordinates of the monomers and dimers optimized via UM06L/def2tzvpp calculations in $\mathrm{CH}_{3} \mathrm{CN}$. b) $\Delta \mathrm{E}=\mathrm{E}($ Dimer $)-2 \mathrm{E}$ (Monomer). c) $\left.\mathrm{E}_{\text {DIS }}=\Delta \mathrm{E}(\mathrm{HF})-\Delta \mathrm{E}(\mathrm{MP} 2) . \mathrm{D}\right) \mathrm{E}_{\text {DIS }}=\Delta \mathrm{E}(\mathrm{B} 98)-\Delta \mathrm{E}$ (B97D).

Table S9. Calculations of the differences of interaction energies in the neutral and dicationic dimers. ${ }^{\text {a }}$

Energy	TTF	TMTTF	TMTSF	ET
E_{D}, Hartrees	-3647.40374	-3962.04039	-19988.21966	-7142.76260
E_{M}, Hartrees	-1823.69252	-1981.00682	-9994.09497	-3571.36426
$\mathrm{E}_{\text {INT }}, \mathrm{kcal} / \mathrm{mol}$	-11.73	-16.78	-18.64	-21.38
$\mathrm{E}_{\mathrm{D}} \mathrm{N}$, Hartrees	-3647.68775	-3962.31444	-19988.50769	-7143.06073
$\mathrm{E}_{\mathrm{M}^{\mathrm{N}}, \text { Hartrees }}$	-1823.84605	-1981.15327	-9994.24590	-3571.51693
$\mathrm{E}_{\text {INT }}, \mathrm{kcal} / \mathrm{mol}$	2.72845157	-4.9601867	-9.97407485	-16.8570847
$\Delta \mathrm{E}_{\mathrm{INT}}, \mathrm{kcal} / \mathrm{mol}$	14.46	11.82	8.67	4.52

a] $\Delta \mathrm{E}_{I N T}=\mathrm{E}_{I N T}{ }^{\mathrm{N}}-\mathrm{E}_{\mathrm{INT}}$, where $\mathrm{E}_{I N T}=\mathrm{E}_{\mathrm{D}}-2 \mathrm{E}_{\mathrm{M}}$ and $\mathrm{E}_{I N T}{ }^{\mathrm{N}}=\mathrm{E}_{D}{ }^{\mathrm{N}}-2 \mathrm{E}_{M^{N}}$ are interaction energies between cationic and neutral monomers in the dicationic and neutral dimers, respectively, E_{D} is an energy of optimized dicationic dimer, $E_{D}{ }^{N}$ is an energy of neutral dimer with the same geometry, E_{M} and $\mathrm{E}_{\mathrm{M}}{ }^{\mathrm{N}}$ are energies of cationic and neutral monomers in the same geometry taken from the dicationic dimer.

Figure S10. Structures and formation energies of the dimers formed by neutral TTF analogues.

[^0]: *Small deviations fromthe is osbestic points were apparently related to absorption bands narrowing at low temperatures.

[^1]: ${ }^{\dagger}$ Note that the residual absorption of dimer $\varepsilon_{D}{ }^{M}$ at the monomer band maximum λ_{M} were calculated by step-by-step approximations and apparent changes in concentrations due to the volume changes with temperature were taken into account to ensure accuracy.

