Supporting Information For

Energetic and Electronic Properties of CsPbBr$_3$ Surfaces: A First-principles Study

Yi Yang,1* Chunju Hou2 and Tong-Xiang Liang1*

1 College of Rare Earths and Faculty of Materials, Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou, China
2 School of Science, Jiangxi University of Science and Technology, Ganzhou, China

*Corresponding author, e-mail address: yangyisouth@yeah.net; liang_tx@126.com

Fig. S1 Calculated planar-averaged local potential for all surfaces.
Table S1 Calculated formation energies (ΔH, eV) of CsBr, PbBr$_2$ and CsPbBr$_3$ with/without SOC. Formation energy of compounds is calculated with respect to element phases.

<table>
<thead>
<tr>
<th>ΔH</th>
<th>CsBr</th>
<th>PbBr$_2$</th>
<th>CsPbBr$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without SOC</td>
<td>-3.789</td>
<td>-3.111</td>
<td>-7.020</td>
</tr>
<tr>
<td>With SOC</td>
<td>-3.787</td>
<td>-2.926</td>
<td>-6.860</td>
</tr>
</tbody>
</table>

Fig. S2 PBEsol calculated phase diagrams of CsPbBr$_3$ (100), (110) and (111) surfaces with spin-orbital coupling (SOC) considered (PBEsol+SOC). The inclusion of SOC only induces minor shift of phase boundaries (small changes of numbers on chemical potential axes in comparison with PBEsol results in main text) and does not influence the order of the stability of the surfaces. We note that (111)-Pb only appears at very special condition of Br-poor and Cs-rich for (111) surfaces in SOC case.
Fig. S3 PBEsol calculated density of states (DOS, states/eV) with/without SOC considered.
Fig. S4 PBEsol calculated DOS in comparison with HSE06 results. HSE06 is mixed with 25% Hartree–Fock exchange potential.