Electronic Supplementary Information

A Theoretical Investigation on the Role of Catalyst Support and Regioselectivity of Molecular Adsorption on a Metal Oxide Surface: NO Reduction on Cu/γ -alumina

Wataru Ota^{a,b}, Yasuro Kojima^b, Saburo Hosokawa^{b,c}, Kentaro Teramura^{b,c}, Tsunehiro Tanaka^{b,c}, Tohru Sato^{a,b,c}*

^a Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan

^b Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

^c Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Kyotodaigaku Katsura, Nishikyo-ku, Kyoto 615-8245, Japan

Figure S1. Calculated band structure of the SSHT slab model. The band gap is 3.97 eV.

No.	Atom	x	y	z	No.	Atom	x	y	z
1	Al	-0.8532	-2.1445	-0.5612	33	0	1.3434	3.4186	-0.9256
2	Al	1.1183	2.1237	0.5174	34	Ο	-1.0954	-3.4306	0.9288
3	Al	-3.9268	2.0726	1.9764	35	Ο	-1.0606	-0.8853	0.9367
4	Al	-3.8845	-2.1163	-2.0309	36	Ο	1.3445	0.8895	-0.9797
5	Al	-0.7291	-2.1526	2.3045	37	Ο	3.0706	-0.7118	-2.0428
6	Al	0.9851	2.1587	-2.3391	38	Ο	-2.7743	0.7033	1.9970
7	Al	2.1827	-2.0494	0.6751	39	Ο	-2.8279	3.4682	2.0617
8	Al	-1.9200	2.1306	-0.6751	40	Ο	3.0547	-3.4826	-2.0462
9	Al	3.2610	0.6592	-0.8137	41	Ο	2.8364	2.0514	3.2291
10	Al	-2.9661	-0.6557	0.7554	42	Ο	-2.6166	-2.4034	-3.2768
11	Al	-2.9988	-3.5769	0.7977	43	Ο	-0.8803	-3.5822	3.4350
12	Al	3.2391	3.5990	-0.7783	44	Ο	-0.7107	-0.7036	3.4130
13	Al	1.1980	-3.4664	-2.1325	45	Ο	1.0240	0.7104	-3.4290
14	Al	-0.9425	3.4665	2.1387	46	Ο	1.1612	3.5945	-3.4700
15	Al	-0.8565	0.6350	2.0730	47	Ο	1.1027	-2.0526	-3.3691
16	Al	1.1586	-0.6416	-2.1244	48	Ο	-0.8946	2.0340	3.3624
17	Ο	1.1042	-2.4880	2.0387	49	Η	-0.8990	-3.6873	4.4039
18	Ο	-0.8358	2.4934	-2.0475	50	Η	-0.1868	-0.5600	4.2270
19	Ο	3.0532	2.1092	0.4986	51	Η	-1.6305	1.9482	4.0115
20	Ο	-2.7804	-2.1103	-0.5342	52	Η	1.2013	-3.5711	2.0778
21	Ο	1.0544	-2.0888	-0.7611	53	Η	3.8205	2.1588	-2.8493
22	Ο	-0.7881	2.0931	0.7454	54	Η	1.0212	0.5948	-4.3975
23	Ο	3.1987	2.1327	-2.0858	55	Η	0.3266	-2.0683	-3.9760
24	Ο	-2.8919	-2.1045	2.0757	56	Η	2.9879	2.0437	4.2012
25	Ο	0.9815	3.4223	1.9889	57	Η	-2.7926	-2.4397	-4.2435
26	Ο	-0.7320	-3.4516	-1.9971	58	Η	1.6861	0.8258	2.5299
27	Ο	-0.6912	-0.7763	-1.8274	59	Η	-3.4662	-2.0932	2.8751
28	Ο	0.9784	0.7850	1.8281	60	Η	-0.9186	3.6123	-2.0851
29	Ο	3.2683	-0.6428	0.5749	61	Η	1.7686	3.7268	-4.2273
30	Ο	-2.9337	0.6544	-0.6651	62	Η	-1.4400	-0.1669	-2.0215
31	Ο	-3.0102	3.5246	-0.5532	63	Η	1.6000	3.0011	2.6990
32	Ο	3.2518	-3.4887	0.5769	64	Η	-1.4481	-3.0488	-2.6881

Table S1. Cartesian coordinates of the SSHT slab model. Lattice vectors are (-8.0678, 0.0000, 0.0000) and (0.0000, 8.4130, 0.0000). The coordinates are provided in Angstrom units.

(m) LUMO+11 (s, t)

Figure S2. (a) Labels of O atoms of the bare cluster. (b)–(m) LUMO–LUMO+11 of the bare cluster. The O atoms that should be terminated by H atoms because of large molecular orbital coefficients are provided in parentheses. Isosurface values are 5.0×10^{-2} . a.u.

Table S2. Molecular orbital coefficients of the O atoms for the LUMO. The O atoms that should be terminated by H atoms are at E and o.

<u></u>	~ ~ ~	<u></u>	~ ~ ~
O-label	Coefficient	O-label	Coefficient
Α	0.0098	Т	0.0167
В	0.0129	U	0.0052
\mathbf{C}	0.0461	a	0.0666
D	0.0053	d	0.0775
Ε	0.0402	f	0.0601
\mathbf{F}	0.0018	g	0.0253
G	0.0007	h	0.0034
Н	0.0365	i	0.0248
Ι	0.0216	j	0.0115
J	0.0012	k	0.0113
Κ	0.0155	1	0.0028
\mathbf{L}	0.0057	m	0.0033
Μ	0.0046	0	0.0414
Ν	0.0040	р	0.0071
Ο	0.0128	q	0.0010
Р	0.0041	r	0.0075
Q	0.0007	\mathbf{s}	0.0259
Ř	0.0027	\mathbf{t}	0.0030
S	0.0047		

Table S3. Molecular orbital coefficients of the O atoms for the LUMO+1. The O atoms that should be terminated by H atoms are at C and g.

O-label	Coefficient	O-label	Coefficient
А	0.0177	Т	0.0040
В	0.0409	U	0.0022
\mathbf{C}	0.0817	a	0.0136
D	0.0010	d	0.0141
Ε	0.0272	f	0.0043
\mathbf{F}	0.0014	g	0.0977
G	0.0007	h	0.0015
Η	0.0683	i	0.0042
Ι	0.0206	j	0.0097
J	0.0004	k	0.0232
Κ	0.0048	1	0.0026
L	0.0119	m	0.0054
Μ	0.0126	0	0.0370
Ν	0.0039	р	0.0024
0	0.0092	q	0.0024
Р	0.0006	r	0.0189
Q	0.0004	\mathbf{s}	0.0126
R	0.0079	\mathbf{t}	0.0006
S	0.0017		

Table S4. Molecular orbital coefficients of the O atoms for the LUMO+2. The O atoms that should be terminated by H atoms are at i and r.

O-label	Coefficient	O-label	Coefficient
А	0.0115	Т	0.0063
В	0.0049	U	0.0019
\mathbf{C}	0.0036	a	0.0317
D	0.0202	d	0.0390
Ε	0.0159	f	0.0304
\mathbf{F}	0.0014	g	0.0084
G	0.0003	h	0.0201
Η	0.0101	i	0.0898
Ι	0.0386	j	0.0237
J	0.0026	k	0.0014
Κ	0.0001	1	0.0004
\mathbf{L}	0.0013	m	0.0100
Μ	0.0234	0	0.0970
Ν	0.0155	р	0.0067
Ο	0.0049	q	0.0062
Р	0.0006	r	0.0709
Q	0.0119	s	0.0229
R	0.0272	\mathbf{t}	0.0011
S	0.0039		

Table S5. Molecular orbital coefficients of the O atoms for the LUMO+3. The O atoms that should be terminated by H atoms are at M and h.

O-label	Coefficient	O-label	Coefficient
А	0.0072	Т	0.0087
В	0.0174	U	0.0039
\mathbf{C}	0.0343	a	0.0042
D	0.0008	d	0.0081
Ε	0.0042	f	0.0023
\mathbf{F}	0.0004	g	0.0069
G	0.0007	h	0.1394
Η	0.0192	i	0.0155
Ι	0.0005	j	0.0046
J	0.0004	k	0.0018
Κ	0.0002	1	0.0024
\mathbf{L}	0.0019	m	0.0712
Μ	0.1054	0	0.0044
Ν	0.0024	р	0.0044
Ο	0.0000	q	0.0587
Р	0.0001	r	0.0142
\mathbf{Q}	0.0988	\mathbf{S}	0.0072
R	0.0052	\mathbf{t}	0.0053
S	0.0009		

Table S6. Molecular orbital coefficients of the O atoms for the LUMO+4. The O atoms that should be terminated by H atoms are at j and o.

O-label	Coefficient	O-label	Coefficient
А	0.0018	Т	0.0033
В	0.0007	U	0.0078
\mathbf{C}	0.0005	a	0.0001
D	0.0086	d	0.0015
Ε	0.0320	f	0.0003
\mathbf{F}	0.0001	g	0.0014
G	0.0001	h	0.0014
Η	0.0006	i	0.1389
Ι	0.0449	j	0.0473
J	0.0002	k	0.0083
Κ	0.0014	1	0.0002
\mathbf{L}	0.0000	m	0.0005
Μ	0.0011	0	0.1911
Ν	0.0470	р	0.0011
0	0.0091	q	0.0017
Р	0.0004	r	0.0664
Q	0.0004	\mathbf{s}	0.0253
R	0.0174	\mathbf{t}	0.0003
S	0.0018		

Table S7. Molecular orbital coefficients of the O atoms for the LUMO+5. The O atoms that should be terminated by H atoms are at Q and m.

O-label	Coefficient	O-label	Coefficient
А	0.0003	Т	0.0060
В	0.0007	U	0.0009
\mathbf{C}	0.0007	a	0.0003
D	0.0003	d	0.0001
Ε	0.0003	f	0.0001
\mathbf{F}	0.0001	g	0.0022
G	0.0005	h	0.1387
Η	0.0098	i	0.0014
Ι	0.0020	j	0.0004
J	0.0000	k	0.0000
Κ	0.0000	1	0.0028
\mathbf{L}	0.0081	m	0.2935
Μ	0.0682	0	0.0006
Ν	0.0003	р	0.0009
0	0.0004	q	0.0213
Р	0.0001	r	0.0006
\mathbf{Q}	0.1079	\mathbf{s}	0.0002
Ŕ	0.0003	\mathbf{t}	0.0002
S	0.0001		

Table S8. Molecular orbital coefficients of the O atoms for the LUMO+6. The O atoms that should be terminated by H atoms are at I and q.

O-label	Coefficient	O-label	Coefficient
А	0.0014	Т	0.0410
В	0.0001	U	0.0040
\mathbf{C}	0.0030	a	0.0106
D	0.0114	d	0.0019
Ε	0.0134	f	0.0006
\mathbf{F}	0.0005	g	0.0007
G	0.0000	h	0.0136
Η	0.0022	i	0.0153
Ι	0.0640	j	0.0109
J	0.0005	k	0.0003
Κ	0.0004	1	0.0051
\mathbf{L}	0.0022	m	0.0965
Μ	0.0051	0	0.0092
Ν	0.0039	р	0.0036
0	0.0007	q	0.2677
Р	0.0009	r	0.0045
Q	0.0186	s	0.0046
Ŕ	0.0014	\mathbf{t}	0.0484
\mathbf{S}	0.0006		

Table S9. Molecular orbital coefficients of the O atoms for the LUMO+7. The O atoms that should be terminated by H atoms are at I and N.

O-label	Coefficient	O-label	Coefficient
А	0.0129	Т	0.0148
В	0.0111	U	0.0030
\mathbf{C}	0.0054	a	0.0290
D	0.0381	d	0.0009
\mathbf{E}	0.0311	f	0.0041
\mathbf{F}	0.0013	g	0.0014
G	0.0002	h	0.0112
Η	0.0012	i	0.0336
Ι	0.1882	j	0.0205
J	0.0020	k	0.0003
Κ	0.0006	1	0.0011
\mathbf{L}	0.0008	m	0.0203
Μ	0.0075	0	0.0145
Ν	0.0416	р	0.0018
Ο	0.0002	q	0.0477
Р	0.0005	r	0.0657
\mathbf{Q}	0.0039	\mathbf{S}	0.0012
R	0.0344	\mathbf{t}	0.0161
S	0.0002		

Table S10. Molecular orbital coefficients of the O atoms for the LUMO+8. The O atoms that should be terminated by H atoms are at R and r.

O-label	Coefficient	O-label	Coefficient
А	0.0037	Т	0.0002
В	0.0018	U	0.0014
\mathbf{C}	0.0011	a	0.0009
D	0.0158	d	0.0039
Ε	0.0073	f	0.0009
\mathbf{F}	0.0003	g	0.0010
G	0.0000	h	0.0018
Η	0.0000	i	0.1519
Ι	0.0716	j	0.0085
J	0.0010	k	0.0028
Κ	0.0003	1	0.0002
\mathbf{L}	0.0003	m	0.0050
Μ	0.0011	0	0.0497
Ν	0.0801	р	0.0010
0	0.0054	q	0.0147
Р	0.0000	r	0.1532
\mathbf{Q}	0.0013	\mathbf{S}	0.0034
R	0.0820	\mathbf{t}	0.0007
S	0.0003		

Table S11. Molecular orbital coefficients of the O atoms for the LUMO+9. The O atoms that should be terminated by H atoms are at T and U.

O-label	Coefficient	O-label	Coefficient
А	0.0002	Т	0.0498
В	0.0000	U	0.4328
\mathbf{C}	0.0001	a	0.0005
D	0.0002	d	0.0001
\mathbf{E}	0.0004	f	0.0000
\mathbf{F}	0.0000	g	0.0001
G	0.0000	h	0.0005
Η	0.0001	i	0.0003
Ι	0.0001	j	0.0010
J	0.0000	k	0.0004
Κ	0.0001	1	0.0009
\mathbf{L}	0.0004	m	0.0039
Μ	0.0003	0	0.0045
Ν	0.0003	р	0.0008
Ο	0.0015	q	0.0128
Р	0.0093	r	0.0053
\mathbf{Q}	0.0012	\mathbf{S}	0.0055
R	0.0108	\mathbf{t}	0.0211
S	0.1069		

Table S12. Molecular orbital coefficients of the O atoms for the LUMO+10. The O atoms that should be terminated by H atoms are at A and a.

O-label	Coefficient	O-label	Coefficient
А	0.1702	Т	0.0017
В	0.0057	U	0.0001
\mathbf{C}	0.0006	a	0.3280
D	0.0248	d	0.0485
Ε	0.0013	f	0.0213
\mathbf{F}	0.0042	g	0.0020
G	0.0000	h	0.0003
Η	0.0001	i	0.0152
Ι	0.0247	j	0.0016
J	0.0003	k	0.0008
Κ	0.0002	1	0.0001
\mathbf{L}	0.0000	m	0.0009
Μ	0.0002	0	0.0004
Ν	0.0047	р	0.0012
0	0.0003	q	0.0022
Р	0.0000	r	0.0015
\mathbf{Q}	0.0004	\mathbf{s}	0.0097
Ŕ	0.0011	\mathbf{t}	0.0114
S	0.0003		

Table S13. Molecular orbital coefficients of the O atoms for the LUMO+11. The O atoms that should be terminated by H atoms are at s and t.

O-label	Coefficient	O-label	Coefficient		
А	0.0072	Т	0.0296		
В	0.0001	U	0.0313		
\mathbf{C}	0.0001	a	0.0131		
D	0.0012	d	0.0022		
Ε	0.0003	f	0.0008		
\mathbf{F}	0.0004	g	0.0001		
G	0.0000	h	0.0008		
Η	0.0002	i	0.0009		
Ι	0.0013	j	0.0006		
J	0.0004	k	0.0015		
Κ	0.0005	1	0.0013		
L	0.0004	m	0.0073		
Μ	0.0006	0	0.0108		
Ν	0.0017	р	0.0208		
0	0.0036	q	0.0279		
Р	0.0006	r	0.0169		
Q	0.0065	\mathbf{S}	0.2214		
Ŕ	0.0045	\mathbf{t}	0.2472		
S	0.0238				

Table S14. Cartesian coordinates of the SSHT cluster model. The coordinates are provided in Angstrom units.

No.	Atom	x	y	z	No.	Atom	x	y	2
1	Al	-2.5502	3.0942	-0.8695	48	0	5.2249	1.8849	1.2792
2	Al	3.2166	-1.2169	1.6664	49	Ο	-4.6889	0.8051	2.4615
3	Al	-1.5393	-0.0745	-1.3152	50	Ο	5.3589	1.2095	-1.4670
4	Al	3.4200	-1.3881	-1.2848	51	Ο	-5.1650	-1.4838	1.7196
5	Al	-1.0325	-1.1988	1.6144	52	Ο	-4.4465	0.2456	-0.1377
6	Al	1.7267	3.4648	-0.4740	53	Ο	-3.2238	4.6504	-1.4638
$\overline{7}$	Al	4.1619	1.2338	-0.0048	54	Η	-0.3025	3.4943	-2.2320
8	Al	-3.9027	-1.5183	0.3049	55	Η	3.3814	-3.7740	-1.2575
9	Al	-3.3571	1.0729	1.1627	56	Η	1.6778	-1.5870	-3.1003
10	Al	-0.6281	1.9749	1.0517	57	Н	-3.0948	1.4581	-2.7084
11	Al	1.2776	0.2910	0.0178	58	Н	-1.2750	-5.7087	-0.6665
12	Al	0.7433	-2.2661	-0.9075	59	Н	2.4161	-1.2264	3.8830
13	Al	-1.8693	-3.2133	-0.6837	60	Н	-1.2305	2.1810	-2.8075
14	Ο	-0.4508	-1.7859	3.2118	61	Η	1.7527	-3.9919	0.4531
15	Ο	1.1962	4.0541	-2.0353	62	Η	0.8763	-1.6662	3.1542
16	0	4.0528	-3.1077	-0.9378	63	Η	4.4182	-3.3290	2.1297
17	0	2.7527	0.7012	1.2228	64	Н	2.6147	0.9433	-2.0955
18	Ō	-1.9346	1.3556	-0.2431	65	Н	-0.0233	3.1316	3.2074
19	Ō	-0.5662	-2.3646	0.3723	66	Н	0.1691	-4.6243	-0.3052
20^{-5}	Õ	2.8207	0.5138	-1.2330	67	Н	-0.7992	-2.6022	3.6363
21	Õ	-5.0136	-2.4729	-0.9316	68	Н	-5.3616	-1.8834	-1.6464
$\frac{-}{22}$	Õ	-2.0283	1.8322	2.3045	69	Н	1.7379	5.5453	0.9977
23	Ō	1.9749	-1.4832	3.0373	70	Н	5.2130	-1.4785	-3.0162
$\frac{-3}{24}$	Õ	-1.2246	3.0410	-2.2778	71	Н	6.1809	1.6539	1.3343
$25^{$	Õ	1.3252	-4.0322	-0.4446	72^{-1}	Н	-4.2572	-3.2741	-1.4077
26	Ō	-3.7172	2.0835	-2.1075	73	Н	-5.4722	1.4035	2.3806
27	Ō	-0.9863	-4.8499	-0.2816	74	Н	-3.3846	-3.8344	1.3581
28	Ō	4.4445	-0.7267	2.8799	75	Н	-0.3270	-3.6149	-2.7614
29	Ō	-2.6935	-0.6290	1.4533	76	Н	5.1581	0.2420	-2.1452
30	Ō	3.4820	2.9984	-0.3267	77	Н	2.4791	1.2776	1.9776
31	Ō	0.8436	2.0471	-0.0863	78	Η	-1.8570	0.0726	-3.7532
32	0	-0.0033	0.2405	1.3385	79	Η	4.0737	3.5486	0.2505
33	0	2.1207	-1.4103	0.1288	80	Η	4.8517	0.1673	2.7492
34	0	-1.2723	3.6264	0.3936	81	Η	-4.5038	0.7685	-0.9782
35	0	-3.8041	2.8138	0.5731	82	Η	-5.0325	-0.4170	2.2211
36	0	4.4883	-0.6683	0.1399	83	Η	-3.0618	-3.6900	-2.7464
37	0	-3.1081	-3.1683	0.7013	84	Н	0.9085	3.7835	1.9153
38	0	-2.5618	-1.4750	-1.0319	85	Н	5.5914	2.0413	-1.9385
39	Ō	0.1992	-0.4509	-1.2645	86	Н	1.4333	4.8380	-2.5729
40	Õ	-1.9214	0.6541	-2.9605	87	H	-1.9424	1.2946	3.1263
41	Õ	4.6498	-0.8188	-2.5521	88	H	-3.9527	5.0606	-0.9370
42^{-}	Õ	-3.2263	-3.9387	-1.8010	89	H	-4.2246	2.7701	-2.6092
43^{-}	Õ	2.0495	-2.0500	-2.3176	90	H	5.4101	-0.9795	0.2964
44	Õ	-0.5691	-2.9512	-2.0781	91	H	4.0413	-3.1975	0.2902
45	Õ	3.7946	-2.9858	1.4495	92	H	-3.6800	3.4878	1.2846
46	Ō	0.4584	2.9261	2.3711	93	Н	-0.8927	4.5192	0.5244
47	Ō	1.4592	4.6146	0.8687	94	Н	-6.1008	-1.6834	1.4785

Table S15. OVCCs for the effective mode of the $\gamma\text{-alumina cluster model}.$ The core orbitals are neglected.

i		Energy $/ eV$	$f_{i,\xi} imes 10^{-3}$ a.u.
265	HOMO	-5.921	1.525
263	HOMO-2	-8.861	1.052
264	HOMO-1	-8.978	1.038
260	HOMO-5	-9.161	0.840
÷	•	•	÷
149	HOMO-116	-17.613	0.007
-			

Figure S4. (a) HOMO, (b) OVCD for the HOMO, (c) HOMO-2, (d) OVCD for the HOMO-2, (e) HOMO-1, and (f) OVCD for the HOMO-1 of the γ -alumina cluster model. Isosurface values of the molecular orbitals are 5.0×10^{-2} a.u., and of the OVCDs are 2.0×10^{-5} a.u.

Figure S5. Geometry-optimized structures of the $Cu(OH)_2/\gamma$ -alumina cluster model using the (a) 3-21G and (b) 6-31G(d,p) basis sets. The Cu–O distances and O–Cu–O angles are also shown.

Figure S6. (a) Initial positions of NO on the $Cu(OH)_2/\gamma$ -alumina cluster model. Geometryoptimized structures obtained by initially placing NO on positions (b) I, (c), II, or (d) III. The total energies of (c) and (d) respectively are 0.261 and 1.416 eV higher than that of (b). The reference of the total energy is that of (b), -8068.23720195 a.u.

Figure S7. Electron density differences of the $Cu(OH)_2/\gamma$ -alumina cluster model between (a) S_1 and S_0 , (b) S_2 and S_0 , (c) S_4 and S_0 , (d) S_6 and S_0 , and (e) S_{12} and S_0 . Isosurface values are 5.0×10^{-3} a.u.

Figure S8. Geometry-optimized structures of the (a) $Cu(OH)_2/\gamma$ -alumina, (b) NO-adsorbed $Cu(OH)_2/\gamma$ -alumina, and (c) (NO)₂-adsorbed $Cu(OH)_2/\gamma$ -alumina slab models.

Figure S9. Atomic labels of the tetrahedral Al species on which $Cu(OH)_2$ is adsorbed.

Table S16. Interatomic distance and Mulliken charge of the tetrahedral Al species in Fig. S8 before and after the Cu adsorption.

		d (Å)			Mulliken charge					
		Al1-O1	Al1-O2	Al1-O3	Al1-O4	Al1	O1	O2	O3	O4
Cluster model	γ -alumina	1.757	1.779	1.839	1.830	0.928	-0.876	-0.860	-0.723	-0.920
	Cu/γ -alumina	1.823	1.775	1.819	1.804	1.043	-0.877	-0.864	-0.799	-0.935
Slab model	γ -alumina	1.791	1.772	1.800	1.859	1.311	-1.004	-1.017	-0.931	-1.008
	${\rm Cu}/\gamma\text{-alumina}$	1.845	1.753	1.785	1.837	1.436	-0.898	-1.026	-0.948	-1.018

Figure S10. Orbital levels of the geometry-optimized AlO_4 with the T_d symmetry. Five electrons are provided to obtain the appropriate oxidation number.

	Frequency (cm^{-1})	VCC (10^{-4} a.u.)
e	267.1	0.0000
t_2	336.0	0.8621
a_1	509.0	2.1265
t_2	582.9	1.1002

Table S17. VCCs of AlO_4 .

Figure S11. Geometry-optimized structures of the O₂-adsorbed $Cu(OH)_2/\gamma$ -alumina (a) cluster and (b) slab models.

Figure S12. Fragment orbital analyses of the (a) NO- and (b) O₂-adsorbed Cu(OH)₂/ γ -alumina cluster models. Values of P_{km} are provided in percentages.