New approach to increase the sensitivity of Tb-Eu-based luminescent thermometer

Mikhail B. Vialtsev^{a,b}, Alexander I. Dalinger^a, Egor V. Latipov^{a,c}, Leonid S. Lepnev^d, Sergey E. Kushnir^{a,b}, Sergey Z. Vatsadze^a, Valentina V. Utochnikova^{*a,b,e}

^a Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1, build.3, 119991, Moscow, Russian Federation

^b Department of Materials Science, Lomonosov Moscow State University, Moscow 119991, Russia

^c Institute of Nanotechnology of Microelectronics of the Russian Academy of Sciences, Moscow, Russia

^d P.N. Lebedev Physical Institute, Leninsky prosp. 53, Moscow, 119992, Russia

^e SIA Evoled, Puskina iela 1A-24, Riga, LV-1050, Latvia

Contents

Experimental section	2	
PXRD data	3	
Thermal analyses	6	
Infrared spectroscopy	7	
EDX and SEM data	8	
Luminescence data	10	

Experimental section

Methods

Thermal analyses were carried out on a thermoanalyzer STA 409 PC Luxx (NETZSCH, Germany) in the temperature range of 20–1000 °C in air atmosphere, heating rate 10 °/min. The evolved gases composition was simultaneously monitored during the TA experiment using a coupled QMS 403C Aeolos quadrupole mass spectrometer (NETZSCH, Germany). The mass spectra were registered for the species with following m/z values: 18 (corresponding to H₂O), 44 (corresponding to CO₂).

Powder X-ray diffraction (PXRD) was performed by using Rigaku D/MAX 2500 [λ (Cu-K_α) = 1,54046 Å; Ni filter] the range of 2Θ 20–60°.

Emission and excitation spectra were measured with a Fluorolog 3 spectrofluorometer over excitation with a xenon lamp. *Luminescence lifetime* measurements were recorded and detected on the same system. Lifetimes were averages of at least three independent measurements. All luminescence decays proved to be perfect single-exponential functions.

Scanning electron microscopy (SEM) and *Energy-dispersive X-ray spectroscopy (EDX)*. The microstructures and composition of samples were observed using SEM (Leo Supra 50 VP) attached with EDX (Oxford, X-Max 80).

Synthesis of lanthanide complexes

The synthesis of $Tb_xEu_yGd_{1-x-y}(Carb)_3\cdot 4H_2O$ was carried out in water by the exchange reaction between lanthanide chlorides and potassium carboxylates; the homogenization was achieved by co-dissolving of the initial chlorides:

$$HCarb + KOH = K(Carb) + H_2O$$
(1)

```
3K(Carb) + xTbCl_{3} \cdot 6H_{2}O + yEuCl_{3} \cdot 6H_{2}O + (1-x-y)GdCl_{3} \cdot 6H_{2}O = Tb_{x}Eu_{y}Gd_{1-x-y}(Carb)_{3} \cdot 4H_{2}O + 3KCl (2)
```


 $\begin{array}{l} \textbf{Fig. S1} \ \text{PXRD data of a) TbCarb_{3} \cdot 4H_{2}O; \ b) \ \text{EuCarb_{3} \cdot 4H_{2}O; \ c) Tb_{0.99}\text{Eu}_{0.01}\text{Carb_{3} \cdot 4H_{2}O; \ d) } \\ \textbf{d) Tb}_{0.96}\text{Eu}_{0.04}\text{Carb_{3} \cdot 4H_{2}O; \ e) \ Tb_{0.9}\text{Eu}_{0.1}\text{Carb_{3} \cdot 4H_{2}O; \ f) \ Tb}_{0.24}\text{Eu}_{0.06}\text{Gd}_{0.7}\text{Carb_{3} \cdot 4H_{2}O; \ g) } \\ \textbf{Tb}_{0.008}\text{Eu}_{0.002}\text{Gd}_{0.99}\text{Carb_{3} \cdot 4H_{2}O; \ f) \ Mylar film. } \end{array}$

Fig. S2 Thermal analysis with mass-detection of the evolved gases of $Tb_{0.24}Eu_{0.06}Gd_{0.7}Carb_3\cdot 4H_2O$

EDX and SEM data

The metal ratio in the complexes was determined using EDX. EDX data confirmed the coincidence of the theoretical and experimental terbium-europium-gadolinium ratio in the synthesized terbium-europium-gadolinium carboxylates (Table. S1).

Sample	Tb	Eu	Gd
Tb _{0.99} Eu _{0.01} (Carb)₃·4H₂O	99	1	0
Tb _{0.96} Eu _{0.04} (Carb) ₃ ·4H ₂ O	97	3	0
Tb _{0.9} Eu _{0.1} Carb ₃ ·4H ₂ O	91	9	0
Tb _{0.8} Eu _{0.2} (Carb) ₃ ·4H ₂ O	81	19	0
Tb _{0.24} Eu _{0.06} Gd _{0.7} Carb ₃ ·4H ₂ O	25	4	71
Tb _{0.08} Eu _{0.02} Gd _{0.9} (Carb) ₃ ·4H ₂ O	8	2	90
Tb _{0.024} Eu _{0.006} Gd _{0.97} Carb ₃ ·4H ₂ O	2	1	97

Table. S1 Terbium, europium and gadolinium molar fractions according to EDX data, %

 $\begin{array}{l} \mbox{Fig. S3 SEM data of 1) $Tb_{0.96}Eu_{0.04}(Carb)_3\cdot 4H_2O; 2) $Tb_{0.9}Eu_{0.1}(Carb)_3\cdot 4H_2O; $\\ \mbox{3) $Tb_{0.8}Eu_{0.2}(Carb)_3\cdot 4H_2O; 4) $Tb_{0.24}Eu_{0.06}Gd_{0.7}(Carb)_3\cdot 4H_2O; 5) $Tb_{0.08}Eu_{0.02}Gd_{0.9}(Carb)_3\cdot 4H_2O; $\\ \mbox{6) $Tb_{0.024}Eu_{0.006}Gd_{0.97}(Carb)_3\cdot 4H_2O; 7) $Tb_{0.008}Eu_{0.002}Gd_{0.99}(Carb)_3\cdot 4H_2O; $\\ \end{array}$

Luminescence data

Fig. S4 Luminescence spectra of a) Gd(Carb)₃·4H₂O; b) TbCarb₃·4H₂O; c) EuCarb₃·4H₂O;d) Tb_{0.99}Eu_{0.01}Carb₃·4H₂O; e) Tb_{0.96}Eu_{0.04}Carb₃·4H₂O; f) Tb_{0.9}Eu_{0.1}Carb₃·4H₂O;g) Tb_{0.8}Eu_{0.2}Carb₃·4H₂O; h) Tb_{0.24}Eu_{0.06}Gd_{0.7}Carb₃·4H₂O; i) Tb_{0.08}Eu_{0.02}Gd_{0.9}Carb₃·4H₂O;j) Tb_{0.024}Eu_{0.006}Gd_{0.97}Carb₃·4H₂O; k) Tb_{0.008}Eu_{0.002}Gd_{0.99}Carb₃·4H₂O (λ_{ex} =300 nm, λ_{em} =400...740 nm, room temperature).

Fig. S5 The LIR = I(545 nm)/I (612 nm), Sr temperature dependence and temperature resolution of a) Tb_{0.9}Eu_{0.1}Carb₃·4H₂O; b) Tb_{0.8}Eu_{0.2}Carb₃·4H₂O; c) Tb_{0.08}Eu_{0.02}Gd_{0.9}Carb₃·4H₂O; d) Tb_{0.024}Eu_{0.006}Gd_{0.97}Carb₃·4H₂O; e) Tb_{0.008}Eu_{0.002}Gd_{0.99}Carb₃·4H₂O suspension (λ_{ex}=300 nm, λ_{em} =400...740 nm, 20-45°C).

Fig. S6 Luminescence intensities temperature dependence of a) Tb_{0.9}Eu_{0.1}Carb₃·4H₂O; b) Tb_{0.8}Eu_{0.2}Carb₃·4H₂O; c) Tb_{0.08}Eu_{0.02}Gd_{0.9}Carb₃·4H₂O; d) Tb_{0.024}Eu_{0.006}Gd_{0.97}Carb₃·4H₂O; e) Tb_{0.008}Eu_{0.002}Gd_{0.99}Carb₃·4H₂O suspension (λ_{ex}=300 nm, λ_{em}=400...740 nm, 20-45°C).

e)