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S1 Absorption cross section in the dipole approximation
In the interaction between matter and an external transverse electric field, the absorption cross section at each frequency
ω is defined as the ratio between the energy exchanged with the field during the interaction, Eexc, and the total field
energy per unit area, Iin,

σ(ω) =
Eexc(ω)

Iin(ω)
. (S1.1)

In the dipole approximation, with no magnetic field applied, the light-matter interaction Hamiltonian is Ĥ(t) = d̂µEµ(t),
where d̂µ is the dipole operator. The total amount of energy exchanged during the interaction is

∆E =

+∞∫
−∞

dE(t)
dt

dt =
+∞∫
−∞

d
dt
〈Ψ(t)|Ĥ(t)|Ψ(t)〉 dt , (S1.2)

where E(t) = 〈Ψ(t)|Ĥ(t)|Ψ(t)〉 is the total energy at time t. By applying the Ehrenfest theorem to the integrand of Eq.
(S1.2), we obtain

d
dt
〈Ψ(t)|Ĥ(t)|Ψ(t)〉=

〈
Ψ(t)

∣∣∣∣∂ Ĥ(t)
∂ t

∣∣∣∣Ψ(t)
〉
=−dµ(t)

dEµ(t)
dt

. (S1.3)

Substituting Eq. (S1.3) into Eq. (S1.2), we have

∆E =−
+∞∫
−∞

dt dµ(t)
dEµ(t)

dt
. (S1.4)

By using the Plancherel theorem, we change from time to the frequency domain

∆E =− i
2π

+∞∫
−∞

dω ω d̃µ(ω)Ẽ ∗µ (ω), (S1.5)

where d̃µ(ω) and Ẽµ(ω) are the Fourier transforms of dµ(t) and E µ(t), respectively. In writing Eq. (S1.5), we have also
used the property of Fourier transform: F [d f (t)/dt] =−iω f̃ (ω) (where F [. . .] is the Fourier transform operator).

Since both dµ(t) and Eµ(t) are real quantities, their complex conjugates fulfill the relations d̃µ(−ω) = d̃∗µ(ω) and
Ẽµ(−ω) = Ẽ ∗µ (ω). Thus, we get

∆E =

∞∫
0

Eexc(ω) dω (S1.6)
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where
Eexc(ω) =

1
π

ω Im
[
d̃µ(ω)Ẽ ∗µ (ω)

]
(S1.7)

may be regarded as the energy absorbed at each frequency ω — a quantity which is defined for ω > 0. Inserting Eq. (S1.7)
and using Iin(ω) = c

4π2 |Ẽ (ω)|2 1 into Eq. (S1.1) leads to

σ(ω) =
4πω

c
Im
[
d̃µ(ω)Ẽ ∗µ (ω)

]
|Ẽ (ω)|2

(S1.8)

for which, we stress, a restriction to the linear regime is not invoked.

S2 Spectral resolution of the absorption cross section
Here, we derive the expression of Eq. (S1.1) for centrosymmetric systems under an incoming impulsive electric field of
the form Eµ(t) = κµ δ (t).

Let us start with the calculation of the Fourier transform of the time-dependent dipole moment

dµ(t) = θ(t)
+∞

∑
i, j=0

c∗i c jd
i j
µ e−iω jit +θ(−t)d00

µ . (S2.1)

For this purpose, it is useful to consider the spectral representation of the Heaviside theta function:

θ(t) =
i

2π
lim

ε→0+

+∞∫
−∞

dω
e−iωt

ω + iε
. (S2.2)

Straightforward but tedious steps lead us to

d̃µ(ω) = i lim
ε→0+

+∞

∑
i, j=0

c∗i c jd
i j
µ

(
1

ω−ω ji + iε
− 1

ω− iε

)
. (S2.3)

Next, let us evaluate Eexc(ω) as defined in Eq. (S1.7), using Eq. (S2.3) together with Ẽµ(ω) = κµ . By means of
additional straightforward steps, we arrive at

Eexc(ω) = lim
ε→0+

1
π

+∞

∑
i, j>i

Re
[

c∗i c jd
i j
µ κµ

ω ji

ω−ω ji + iε
− cic∗jd

i j
µ κµ

ω ji

ω +ω ji + iε

]
. (S2.4)

We note that Re(cic∗j) = Re(c∗i c j), Im(cic∗j) =− Im(c∗i c j),

Re
(

1
ω±ω ji + iε

)
=

(ω±ω ji)

(ω±ω ji)2 + ε2 , (S2.5)

and

Im
(

1
ω±ω ji + iε

)
=− ε

(ω±ω ji)2 + ε2 . (S2.6)

As a result, we get

Eexc(ω) =
1
π

lim
ε→0+

∑
i, j>i

[
Re(c∗i c j)d

i j
µ κµ ω ji

(
ω−ω ji

(ω−ω ji)2 + ε2 −
ω +ω ji

(ω +ω ji)2 + ε2

)
+ Im(c∗i c j)d

i j
µ κµ ω ji

(
ε

(ω−ω ji)2 + ε2 −
ε

(ω +ω ji)2 + ε2

)]
. (S2.7)

In Eq. (S2.7), we can use

lim
ε→0+

1
π

ε

(ω ji±ω)2 + ε2 = δ (ω ji±ω), (S2.8)

where ω ji > 0 for j > i. Thus, we end up with

Eexc(ω) = ∑
i, j>i

[
lim

ε→0+
Re(c∗i c j)d

i j
µ κµ

(
ω ji(ω−ω ji)

(ω−ω ji)2 + ε2 −
ω ji(ω +ω ji)

(ω +ω ji)2 + ε2

)
+ Im(c∗i c j)d

i j
µ κµ ω jiδ (ω ji−ω)

]
, (S2.9)
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where, as clarified in the derivation of Eq. (S1.7), we restrict ourselves to ω > 0.
Next, let us consider the case of centrosymmetric systems. In this case, the eigenstates are either of gerade or ungerade

parity under inversion of the coordinates. Solely on the based of symmetry considerations, we readily conclude that
Re(c∗i c j) = 0. Using the expression of the ci coefficients in Eq. (3) in the main text, we find that

Im(c∗i c j) = 〈Ψ0|cos
(
d̂µ κµ

)
|Ψi〉

〈
Ψ j
∣∣sin
(
d̂µ κµ

)∣∣Ψ0
〉

− 〈Ψ0|sin
(
d̂µ κµ

)
|Ψi〉

〈
Ψ j
∣∣cos

(
d̂µ κµ

)∣∣Ψ0
〉
. (S2.10)

Finally, using Eq. (S2.9), Eq. (S2.10), and Iin(ω) = c/4π2|κ|2 in Eq. (S1.7), we arrive at

σ(ω) =
Eexc(ω)

Iin(ω)
=

4π2

c|κ|2 ∑
i, j>i

[
〈Ψ0|cos

(
d̂µ κµ

)
|Ψi〉

〈
Ψ j
∣∣sin
(
d̂µ κµ

)∣∣Ψ0
〉

− 〈Ψ0|sin
(
d̂µ κµ

)
|Ψi〉

〈
Ψ j
∣∣cos

(
d̂µ κµ

)∣∣Ψ0
〉]
(d̂µ κµ)i jω jiδ (ω ji−ω). (S2.11)

S3 Fifth order correction to the cross section
Adopting the notation di j

µ =
〈
Ψi
∣∣d̂µ

∣∣Ψ j
〉

and introducing (d̂µ κµ)
n
i j =

〈
Ψi
∣∣(d̂µ κµ)

n
∣∣Ψ j
〉
, the fifth order correction to the cross

section is obtained by power expansion of Eq. (6) in the main text as

σ
(5)(ω) =

4π2

cκ2

{
1

120 ∑
j
(d̂µ κµ)

5
j0(d̂µ κµ)0 jω j0δ (ω−ω j0)

+
1
12 ∑

j>i

[
(d̂µ κµ)

2
0i(d̂µ κµ)

3
j0− (d̂µ κµ)

3
0i(d̂µ κµ)

2
j0
]
(d̂µ κµ)i jω jiδ (ω−ω ji)

+
1
24 ∑

j>i

[
(d̂µ κµ)

4
0i(d̂µ κµ) j0− (d̂µ κµ)0i(d̂µ κµ)

4
j0
]
(d̂µ κµ)i jω jiδ (ω−ω ji)

}
, (S3.1)

which can be expressed as the sum of ground and excited state absorption as

σ
(5)(ω) =

4π2

cκ2

[
σ
(5)
GSA(ω)+σ

(5)
ESA(ω)

]
, (S3.2)

where

σ
(5)
GSA(ω) =

1
120 ∑

j

[
(d̂µ κµ)0 j(d̂µ κµ)

5
j0 +10(d̂µ κµ)

2
00(d̂µ κµ)0 j(d̂µ κµ)

3
j0

−10(d̂µ κµ)
3
00(d̂µ κµ)0 j(d̂µ κµ)

2
j0 +5(d̂µ κµ)

4
00|(d̂µ κµ) j0|2

]
ω j0δ (ω−ω j0) (S3.3)

and

σ
(5)
ESA(ω) =

1
24 ∑

i>0
j>i

{
2
[
(d̂µ κµ)

2
0i(d̂µ κµ)

3
j0− (d̂µ κµ)

3
0i(d̂µ κµ)

2
j0
]

+
[
(d̂µ κµ)

4
0i(d̂µ κµ) j0− (d̂µ κµ)0i(d̂µ κµ)

4
j0
]}

(d̂µ κµ)i jω jiδ (ω−ω ji) . (S3.4)
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