Supplementary information for:

Direct Laser Cooling Schemes for the Triatomic SOH and SeOH Molecules Based on Ab Initio Calculations.

Li Liu, Chuan-Lu Yang*, Zhao-Peng Sun, Mei-Shan Wang and Xiao-Guang Ma

This supplement provides further details of the supplementary data sets relevant to the text. In particular, the equilibrium geometrical structures and fundamental frequencies of the ground and low-lying excited states for 168 electronic states of 28 triatomic molecules containing OH are given by the new method, which can rapidly identify the preferable one among many candidate polyatomic molecules. And the equilibrium structures and fundamental frequencies for the screened molecules by MCSCF are also calculated by using TD/DFT method implemented in Gaussian 16. In addition, the fitting parameters and root mean square errors of two- and three-body terms for SOH and SeOH are listed.

List of Tables:

- Table S1. The equilibrium geometrical structures and fundamental frequencies for 26 triatomic molecules containing OH.

- Table S2. By using TD/DFT method implemented in Gaussian 16, the equilibrium structures and fundamental frequencies for the screened molecules (CaOH, SrOH, BaOH, RaOH, SOH, and SeOH) by MCSCF are calculated.

- Table S3. Fitting parameters and root mean square errors (in cm⁻¹) of the two-body terms for SOH and SeOH molecules.

^{*}Corresponding author. E-mail address: ycl@ldu.edu.cn. (C.L. Yang).

School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, the People's Republic of China

- **Table S4.** Fitting parameters and root mean square errors (in cm⁻¹) of the three-body terms for SOH and SeOH molecules.

Table S1 Calculated and experimental/theoretical molecular parameters for MOH (M is the second- to fifth-period elements of the first to the sixth main group in the periodic table, and includes Cs, Ba, Fr and Ra.). For the triatomic molecules (M=Li-Mg and Ca-Se, including H, P, S), the structural parameters are calculated by MCSCF/cc-pVTZ. For M=Rb and Sr, the basis set of ECP28MDF is used. For M=In-Te, including Si and Al, the cc-pVTZ-DK basis set is employed, while for M=K and Ba, def2-QZVP and ECP46MDF basis sets are adopted, respectively. And for M=Cs, Fr and Ra, ECP78MDF basis set is used. The blue part is the difference in bond lengths, bond angle, and vibrational frequencies between the lowest two electronic states of each molecule. Among them, the excited states are not optimized relative to the ground state of M = As, Sb, and Ga. The yellow mark is the molecules meeting the requirements of the laser cooling candidates. The internuclear distances R_i are given in Å and the harmonic frequencies of normal mode v_i in cm⁻¹. The X represents the symmetry of state because all the calculations are carried out without symmetry.

		R _{O-H}	R _{O-M}	∠ M-O-H	2	1	3	energy	
LiOH	$1^{1}X$	0.952	1.586	179.999	342.23	965.70	4010.34	-83.0829022	
		0.9499	1.5857	180	289	923	3831		Ref. ¹
		0.934	1.590	180	298	1014	4366		Exp. ²
	$2^{1}X$	0.978	2.098	114.133	280.50	401.50	3679.24	-82.9445385	
	31X	0.973	2.094	180.000	244.2	491.16	3755.90	-82.94505605	
	$1^{3}X$	0.978	2.074	114.697	311.36	374.22	3682.25	-82.9551657	
	2 ³ X	0.973	2.067	179.989	270.99	365.05	3758.80	-82.9520152	
	3 ³ X	0.969	1.996	171.796	355.93	364.03	3790.84	-82.86923674	
difference		0.021	0.508	0.001	98.03	474.54	254.44	0.13784615	
BeOH	$1^2 X$	0.958	1.421	129.053	494.93	1242.16	3928.80	-90.2321731	
		0.943	1.401	139.010					Ref. ³
		0.934	1.399		306	1322	4377		Ref. ⁴
		0.949	1.397	141.000	100.2	1263.4	38684		Ref. ⁵
	$2^2 X$	0.963	1.475	111.677	900.92	1115.69	3824.00	-90.0850508	
		0.949	1.446	118.160					Ref. ³
	3 ² X	0.959	1.481	120.314	580.06	1053.86	3875.23	-90.03029058	

	$1^4 X$	0.982	1.842	102.965	437.11	605.70	3619.20	-89.9927095	
	$2^{4}X$	0.983	1.852	108.965	419.90	611.15	3609.70	-89.9944047	
	34X				Dissocia	tion			
difference		0.005	0.054	17.376	405.99	126.47	104.8	0.1471223	
BOH	$1^{1}X$	0.970	1.315	115.864	703.59	1406.89	3815.20	-100.2465496	
		0.949/	1.303/	122.3/					D C 6
		0.944	1.289	122.4					Ref. ⁶
		0.964	1.312	117.0	671	1382	3881		Ref. ⁷
	$2^{1}X$	1.557	1.263	111.398	618.54	1446.67	2739.30	-100.0980987	
	31X	0.974	1.431	106.853	822.00	1014.78	3699.52	-99.98977667	
	$1^{3}X$	0.969	1.355	110.900	1117.65	1350.31	3673.90	-100.1323634	
					1094	1328	3794		Ref. ⁷
	2 ³ X	0.961	1.374	116.644	752.38	1275.10	3865.40	-100.1002726	
	3 ³ X				Dissocia	tion			
difference		0.587	0.052	4.466	85.05	39.78	1075.9	0.1484509	
СОН	$1^2 X$	0.983	1.289	110.426	1189.84	1378.62	3415.20	-113.3280569	
		0.980	1.300	111.7	1167	1382	3613		Ref. ⁸
		0.976	1.273	112.956	1146.6	1402.6	3489.1		Ref. ⁹
	$2^2 X$	0.969	1.327	111.540	802.58	1271.06	3776.60	-113.2893471	
		0.96211/	1.30507/	114.386/	705.0/	1317.7/	3847.4/		
		0.96388	1.31398	117.006	706.7	1289.3	3834.2		Ref. ⁹
	3 ² X				Non-conve	rgence			
	$1^4 X$	0.968	1.399	104.762	1067.07	1297.97	3717.90	-113.1976147	
	$2^{4}X$				Dissocia	tion			
	34X				Dissocia	tion			
difference		0.014	0.038	1.114	387.26	107.56	361.4	0.0387099	
NOH	$1^{1}X$	0.993	1.280	109.142	1206.69	1464.32	3197.50	-129.8904345	
		0.985/	1.263/	110.42/	1000	1.420	2020		D . C10
		0.984/	1.265	110.30	1238	1450	2928		Rel."
	$2^{1}X$	0.979	1.332	106.616	1119.80	1252.14	3528.40	-129.8600196	
	31X	0.972	1.380	106.581	856.96	1082.29	3726.01	-129.80783679	
	$1^{3}X$	0.972	1.353	104.990	1098.21	1272.63	3658.60	-129.9159503	
		0.968	1.326	107.47	1108	1215	3523		Ref. ¹⁰
	2 ³ X				Dissocia	tion			
	3 ³ X	0.976	2.205	104.644	180.46	290.24	3634.60	-129.8989907	
difference		0.004	0.852	0.346	917.75	982.39	24	0.0169596	
O2H	$1^2 X$	0.974	1.360	102.699	1051.66	1423.81	3615.90	-150.3166449	
		0.971	1.330	104.3	1111.9	1413.3	3482.4		Exp. ¹¹
		0.954	1.370	104	1099.31	1381.1	3441.3		Ref. ¹²
	$2^2 X$	0.973	1.442	99.420	863.46	1261.05	3683.80	-150.2873047	
	3 ² X				Dissocia	tion			
	$1^4 X$				Dissocia	tion			
	$2^{4}X$				Dissocia	tion			

	34X				Dissocia	tion			
difference		0.001	0.082	3.279	188.2	162.76	67.9	0.0293402	
NaOH	$1^{1}X$	0.955	1.956	179.995	263.05	569.04	3915.10	-237.4269107	
		0.96	1.95			431			Exp. ¹³
	$2^{1}X$	0.975	2.699	126.397	89.91	215.75	3716.83	-237.36880952	
	$3^1 X$				virtual fre	quency			
	$1^{3}X$	0.976	2.631	119.020	120.66	245.80	3713.30	-237.3754286	
	2 ³ X	0.974	2.643	180.042	97.43	269.52	3741.50	-237.3742288	
	3 ³ X	0.973	2.359	179.734	212.53	268.28	3754.47	-237.28238159	
difference		0.02	0.743	53.598	173.14	353.29	198.27	0.05810118	
MgOH	$1^2 X$	0.955	1.804	140.911	286.11	741.93	3949.30	-275.2102068	
		0.872	1.780						Exp. ¹⁴
		0.941	1.773		389	785	4301		Ref. ⁴
		0.9467	1.7745		160	747	3851		Ref . ¹⁵
	$2^2 X$	0.964	1.837	112.378	633.47	748.95	3828.80	-275.0890778	
	3 ² X	0.982	2.105	103.944	265.10	881.45	3593.94	-275.07416817	
	$1^4 X$	0.980	2.351	104.086	208.31	456.53	3636.60	-275.0231675	
	$2^{4}X$	0.979	2.363	116.352	198.09	428.22	3654.90	-275.0220575	
	34X	0.970	2.383	173.748	152.48	352.08	3739.89	-275.00315871	
difference		0.009	0.033	28.533	347.36	7.02	120.5	0.1211290	
AlOH	$1^{1}X$	0.951	1.686	172.055	144.54	836.33	4017.40	-317.5407782	
		0.950	1.691	162.26	98	834	4035		Exp. ¹⁶
	$2^{1}X$	0.968	1.783	107.585	609.78	932.90	3773.90	-317.3601877	
					654.2	825.2	3258.4		Exp. ¹⁷
	$3^1 X$				Dissocia	tion			
	$1^{3}X$	0.963	1.730	114.555	739.09	834.02	3820.00	-317.4208038	
	$2^{3}X$	0.956	1.718	126.175	506.17	824.74	3920.20	-317.4085655	
	3 ³ X	0.986	1.703	115.910	576.87	756.11	3332.44	-317.29772882	
difference		0.017	0.097	64.47	465.24	96.57	243.50	0.1805905	
SiOH	$1^2 X$	0.966	1.671	114.330	827.12	879.39	3771.10	-364.4664058	
		0.969	1.647	118.5					Exp. ¹⁸
		0.9603	1.6508	118.57					Ref. ¹⁸
	$2^2 X$	0.959	1.666	125.933	532.87	852.32	3890.00	-364.4503606	
		0.9532	1.6380	137.90					Ref. ¹⁸
	3 ² X				virtual fre	quency			
	$1^{4}X$	0.966	1.712	108.245	737.31	1008.65	3762.90	-364.3484888	
	$2^{4}X$	0.971	3.037	171.796	81.69	160.70	3711.28	-364.30612696	
	34X				Dissocia	tion			
difference		0.007	0.005	11.603	294.25	27.07	118.9	0.0160452	
РОН	$1^{1}X$	0.969	1.643	109.272	868.09	1112.09	3704.90	-416.2345280	
	$2^{1}X$	0.967	1.657	111.738	820.45	982.15	3747.00	-416.2187978	
	31X	0.963	1.664	117.814	674.08	847.20	3835.31	-416.18754847	
	$1^{3}X$	0.962	1.671	111.470	773.38	1014.92	3848.80	-416.2428944	

	2 ³ X	0.983	2.212	97.903	300.18	566.41	3577.20	-416.0896498	
	3 ³ X				Dissocia	tion			
difference		0.021	0.541	13.567	473.2	448.51	271.6	0.1532446	
SOH	1 ² X	0.968	1.663	105.981	805.92	1232.95	3722.70	-473.0346473	
		0.963	1.647	107.4					Ref. ¹⁹
		0.963	1.645	106.4	821	1202	3729		Ref. ²⁰
	$2^2 X$	0.968	1.700	106.080	721.39	1105.29	3738.80	-473.0131165	
	3 ² X				Dissocia	tion			
	$1^4 X$				Dissocia	tion			
	$2^{4}X$				Dissocia	tion			
	$3^4 X$				Dissocia	tion			
difference		0.000	-0.037	-0.099	84.53	127.66	-16.1	-0.0215308	
КОН	$1^{1}X$	0.959	2.222	179.993	328.12	461.29	3797.30	-674.6497061	
		0.912	2.2115		300	408			Exp. ²¹
					320	390			Exp. ²²
	$2^{1}X$	0.973	3.014	179.982	85.40	503.53	3681.46	-674.6041247	
	$3^{1}X$	0.951	2.936	180.245	106.53	601.10	4036.86	-674.57738291	
	$1^{3}X$	0.975	2.998	127.865	101.15	193.30	3658.50	-674.6053536	
	2 ³ X	0.973	2.970	180.001	95.84	238.63	3680.07	-674.5191102	
	3 ³ X	0.953	2.803	123.825	161.07	330.02	4005.28	-674.53872446	
difference		0.014	0.792	0.013	242.84	41.26	115.6	0.0455814	
СаОН	1 ² X	0.932	2.005	179.995	402.46	626.90	4294.40	-752.2877004	
		0.930	1.976		339	606.1			Exp. ²¹
		0.930 0.922	1.976 1.985		339	606.1			Exp. ²¹ Exp. ¹⁴
		0.930 0.922 9.333	1.976 1.985 2.0038	179.97	339 411/408	606.1 622	4276		Exp. ²¹ Exp. ¹⁴ Ref. ²³
		0.930 0.922 9.333 0.9562	1.976 1.985 2.0038 1.9746	179.97 180.00	339 411/408	606.1 622	4276		Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴
	2 ² X	0.930 0.922 9.333 0.9562 0.932	1.976 1.985 2.0038 1.9746 1.977	179.97 180.00 180.000	339 411/408 383.77	606.1 622 652.80	4276 4298.40	-752.2178303	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴
	2 ² X	0.930 0.922 9.333 0.9562 0.932 0.932	1.976 1.985 2.0038 1.9746 1.977 1.956	179.97 180.00 180.000	339 411/408 383.77	606.1 622 652.80	4276 4298.40	-752.2178303	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹
	2 ² X	0.930 0.922 9.333 0.9562 0.932 0.932 0.932	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769	179.97 180.00 180.000 179.9	339 411/408 383.77 402/386	606.1 622 652.80 646	4276 4298.40 4279	-752.2178303	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³
	2 ² X	0.930 0.922 9.333 0.9562 0.932 0.932 0.9332 0.9572	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532	179.97 180.00 180.000 179.9 180.00	339 411/408 383.77 402/386	606.1 622 652.80 646	4276 4298.40 4279	-752.2178303	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴
	2 ² X 3 ² X	0.930 0.922 9.333 0.9562 0.932 0.932 0.9332 0.9572	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532	179.97 180.00 180.000 179.9 180.00	339 411/408 383.77 402/386 Non-conve	606.1 622 652.80 646 rgence	4276 4298.40 4279	-752.2178303	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴
	2 ² X 3 ² X 1 ⁴ X	0.930 0.922 9.333 0.9562 0.932 0.932 0.9332 0.9572	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532	179.97 180.00 180.000 179.9 180.00	339 411/408 383.77 402/386 Non-conve Dissocia	606.1 622 652.80 646 rgence tion	4276 4298.40 4279	-752.2178303	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴
	2 ² X 3 ² X 1 ⁴ X 2 ⁴ X	0.930 0.922 9.333 0.9562 0.932 0.932 0.9332 0.9572	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532	179.97 180.00 180.000 179.9 180.00	339 411/408 383.77 402/386 Non-conve Dissocia Dissocia	606.1 622 652.80 646 rgence tion	4276 4298.40 4279	-752.2178303	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴
	2 ² X 3 ² X 1 ⁴ X 2 ⁴ X 3 ⁴ X	0.930 0.922 9.333 0.9562 0.932 0.932 0.9332 0.9572	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532	179.97 180.00 180.000 179.9 180.00	339 411/408 383.77 402/386 Non-conve Dissocia Dissocia Dissocia	606.1 622 652.80 646 rgence tion tion	4276 4298.40 4279	-752.2178303	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴
difference	2 ² X 3 ² X 1 ⁴ X 2 ⁴ X 3 ⁴ X	0.930 0.922 9.333 0.9562 0.932 0.932 0.9332 0.9572	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532	179.97 180.00 180.000 179.9 180.00	339 411/408 383.77 402/386 Non-conver Dissocia Dissocia Dissocia 18.69	606.1 622 652.80 646 rgence tion tion 25.9	4276 4298.40 4279 4.0	-752.2178303 0.0698701	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴
difference GaOH	2 ² X 3 ² X 1 ⁴ X 2 ⁴ X 3 ⁴ X 1 ¹ X	0.930 0.922 9.333 0.9562 0.932 0.932 0.9332 0.9572 0.9572	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532 0.028 1.828	179.97 180.00 180.000 179.9 180.00 0.005 121.577	339 411/408 383.77 402/386 Non-conve Dissocia Dissocia 18.69 550.30	606.1 622 652.80 646 rgence tion tion 25.9 639.99	4276 4298.40 4279 4.0 3830.30	-752.2178303 0.0698701 -1998.8943855	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴
difference GaOH	2 ² X 3 ² X 1 ⁴ X 2 ⁴ X 3 ⁴ X 1 ¹ X	0.930 0.922 9.333 0.9562 0.932 0.932 0.9332 0.9572 0.9572 0.9572	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532 0.028 1.828 1.828 1.832	179.97 180.00 180.000 179.9 180.00 0.005 121.577 126.1	339 411/408 383.77 402/386 Non-conve Dissocia Dissocia Dissocia 18.69 550.30 497	606.1 622 652.80 646 rgence tion tion 25.9 639.99 613.2	4276 4298.40 4279 4.0 3830.30 3767.1	-752.2178303 0.0698701 -1998.8943855	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²¹ Ref. ²³ Exp. ²⁴
difference GaOH	2 ² X 3 ² X 1 ⁴ X 2 ⁴ X 3 ⁴ X 1 ¹ X 2 ¹ X	0.930 0.922 9.333 0.9562 0.932 0.932 0.932 0.9332 0.9572 0.9572	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532 0.028 1.828 1.828 1.832	179.97 180.00 180.000 179.9 180.00 0.005 121.577 126.1	339 411/408 383.77 402/386 Non-conve Dissocia Dissocia Dissocia 18.69 550.30 497 Dissocia	606.1 622 652.80 646 rgence tion tion 25.9 639.99 613.2 tion	4276 4298.40 4279 4.0 3830.30 3767.1	-752.2178303 0.0698701 -1998.8943855	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴
difference GaOH	2 ² X 3 ² X 1 ⁴ X 2 ⁴ X 3 ⁴ X 1 ¹ X 2 ¹ X 3 ¹ X	0.930 0.922 9.333 0.9562 0.932 0.932 0.932 0.932 0.9572 0.9572	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532 0.028 1.828 1.828 1.832	179.97 180.00 180.000 179.9 180.00 0.005 121.577 126.1	339 411/408 383.77 402/386 Non-conve Dissocia Dissocia 18.69 550.30 497 Dissocia Dissocia	606.1 622 652.80 646 rgence tion tion 25.9 639.99 613.2 tion tion	4276 4298.40 4279 4.0 3830.30 3767.1	-752.2178303 0.0698701 -1998.8943855	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴
difference GaOH	2 ² X 3 ² X 1 ⁴ X 2 ⁴ X 3 ⁴ X 1 ¹ X 2 ¹ X 3 ¹ X 1 ³ X	0.930 0.922 9.333 0.9562 0.932 0.932 0.932 0.9332 0.9572 0.9572 0.964 0.969	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532 0.028 1.828 1.828 1.832	179.97 180.00 180.000 179.9 180.00 0.005 121.577 126.1	339 411/408 383.77 402/386 Non-conve Dissocia Dissocia 18.69 550.30 497 Dissocia Dissocia 642.32	606.1 622 652.80 646 rgence tion tion 25.9 639.99 613.2 tion tion 917.31	4276 4298.40 4279 4.0 3830.30 3767.1 3766.80	-752.2178303 0.0698701 -1998.8943855 -1998.7633443	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴
difference GaOH	2 ² X 3 ² X 1 ⁴ X 2 ⁴ X 3 ⁴ X 1 ¹ X 2 ¹ X 3 ¹ X 1 ³ X 2 ³ X	0.930 0.922 9.333 0.9562 0.932 0.932 0.932 0.932 0.9572 0.9572 0.964 0.969	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532 0.028 1.828 1.828 1.832	179.97 180.00 180.000 179.9 180.00 0.005 121.577 126.1 108.431 111.634	339 411/408 383.77 402/386 Non-conve Dissocia Dissocia Dissocia 18.69 550.30 497 Dissocia Dissocia 642.32 600.09	606.1 622 652.80 646 rgence tion tion 25.9 639.99 613.2 tion tion 917.31 807.75	4276 4298.40 4279 4.0 3830.30 3767.1 3766.80 3789.30	-752.2178303 0.0698701 -1998.8943855 -1998.7633443 -1998.7473206	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴
difference GaOH	2 ² X 3 ² X 1 ⁴ X 2 ⁴ X 3 ⁴ X 1 ¹ X 2 ¹ X 3 ¹ X 1 ³ X 2 ³ X 3 ³ X	0.930 0.922 9.333 0.9562 0.932 0.932 0.932 0.932 0.9572 0.9572 0.964 0.969 0.966 0.965 0.980	1.976 1.985 2.0038 1.9746 1.977 1.956 1.9769 1.9532 0.028 1.828 1.828 1.828 1.832 1.814 1.827 2.315	179.97 180.00 180.000 179.9 180.00 0.005 121.577 126.1 108.431 111.634 101.364	339 411/408 383.77 402/386 Non-conve Dissocia Dissocia Dissocia 18.69 550.30 497 Dissocia Dissocia 642.32 600.09 548.66	606.1 622 652.80 646 rgence tion tion 25.9 639.99 613.2 tion tion 917.31 807.75 1489.92	4276 4298.40 4279 4.0 3830.30 3767.1 3766.80 3789.30 3625.48	-752.2178303 0.0698701 -1998.8943855 -1998.7633443 -1998.7473206 -1998.72203955	Exp. ²¹ Exp. ¹⁴ Ref. ²³ Exp. ²⁴ Exp. ²¹ Ref. ²³ Exp. ²⁴

GeOH	$1^2 X$	0.967	1.796	111.530	679.86	866.80	3748.90	-2150.9455931	
		0.964	1.812	117.0	638.5				Exp. ²⁶
		0.951	1.769	116.59	716	808	4026		Ref. ²⁷
	$2^2 X$	0.963	1.800	119.354	608.19	691.21	3824.90	-2150.9291853	
	3 ² X	1.009	1.895	180.025	300.26	688.06	2700.01	-2150.80638820	
	$1^4 X$	0.971	1.862	103.656	519.40	1033.53	3697.50	-2150.8216064	
	$2^{4}X$				Non-conve	rgence			
	34X				Dissocia	tion			
difference		0.004	0.004	7.824	71.67	175.59	76.0	0.0164078	
AsOH	$1^{1}X$	0.969	1.782	107.740	706.21	1049.48	3718.40	-2309.7373966	
	$2^{1}X$	0.968	1.797	110.096	671.57	946.93	3743.70	-2309.7242295	
	$3^{1}X$	0.965	1.806	114.550	632.09	775.88	3791.33	-2309.694079	
	$1^{3}X$	0.966	1.824	108.672	611.29	979.05	3771.90	-2309.7468493	
	2 ³ X				Dissocia	tion			
	3 ³ X				Non-conve	rgence			
difference		/	/	/	/	/	/	/	
SeOH	1 ² X	0.968	1.804	105.321	662.77	1159.24	3729.10	-2475.3875138	
		0.966	1.766	105.900					Ref. ²⁸
	$2^2 X$	0.969	1.839	105.698	600.38	1056.74	3731.40	-2475.3698670	
	3 ² X				Dissocia	tion			
	$1^4 X$				Dissocia	tion			
	$2^{4}X$	1.572	2.069	90.569	338.83	684.69	3047.98	-2475.17412838	
	$3^{4}X$				Dissocia	tion			
difference		0.001	0.035	0.377	62.39	102.5	2.3	0.0176468	
RbOH	$1^{1}X$	0.959	2.327	180.000	297.54	403.28	3789.26	-99.27645737	
		0.957	2.301	180.000	309	354.4	3600		Ref. ²⁹
		0.965	2.305	180.000					Exp. ³⁰
		0.956	2.488	180.000	277	369	3902		Ref. ³¹
	$2^{1}X$	0.973	3.217	180.000	68.82	427.22	3683.05	-99.23207614	
	$3^{1}X$	0.951	3.200	180.006	68.49	685.96	4036.86	-99.20640565	
	$1^{3}X$	0.952	3.164	132.343	87.12	159.16	4034.32	-99.21061136	
	2 ³ X				virtual free	luency			
	3 ³ X	0.953	2.965	122.825	138.11	317.87	3997.24	-99.16917874	
difference		0.014	0.89	0	228.72	23.94	106.21	0.04438123	
SrOH	1 ² X	0.933	2.140	180.000	366.20	536.08	4293.51	-105.85742286	
		0.922	2.111	180.000	361	528			Exp. ³²
		0.945	2.102	180.000	360	522	3700		Exp. ³³
	$2^2 X$	0.932	2.115	180.000	389.41	550.56	4288.43	-105.78827317	
		0.946	2.088	180.000					Exp. ³³
						544			Exp. ³⁴
	3 ² X				Non-conve	rgence			
	$1^{4}X$	0.955	2.763	111.858	168.29	383.31	3985.05	-105.72724307	
	$2^{4}X$				virtual free	luency			

	34X				Dissocia	tion			
difference		0.001	0.025	0	23.21	14.48	5.08	0.06914969	
InOH	$1^{1}X$	0.940	2.038	129.331	472.22	589.54	4178.10	-5815.7581042	
		0.911/	2.0167/	132/					E 35
		0.980	2.031	127.7					Exp.55
				132	378	542			Exp. ³⁶
	$2^{1}X$	0.964	2.056	121.096	519.42	576.95	3821.70	-5815.7888674	
	$3^1 X$				Dissocia	tion			
	$1^{3}X$	0.971	2.016	109.564	575.97	815.77	3717.00	-5815.6557034	
				105	496	829			Exp. ³⁶
	2 ³ X	0.963	2.015	117.549	569.75	694.10	3833.60	-5815.6586702	
	3 ³ X				Dissocia	tion			
difference		0.024	0.018	8.235	47.2	12.59	356.4	0.0307632	
SnOH	$1^2 X$	0.962	1.981	117.608	634.10	744.63	3840.40	-6098.4930371	
	$2^2 X$	0.940	2.000	126.927	524.31	629.73	4184.50	-6098.4888271	
	$3^2 X$				Dissocia	tion			
	$1^4 X$	0.943	2.037	108.688	530.41	975.83	4138.50	-6098.4001203	
	$2^{4}X$				Dissocia	tion			
	34X				Dissocia	tion			
difference		0.022	0.019	9.319	109.79	114.90	344.1	0.0042100	
SbOH	$1^{1}X$	0.943	1.982	111.811	624.30	966.19	4137.40	-6388.9727957	
	$2^{1}X$	0.943	1.989	114.637	607.69	865.10	4135.90	-6388.9672654	
	$3^{1}X$	0.942	1.987	120.259	586.22	745.49	4155.72	-6388.94491042	
	$1^{3}X$	0.942	2.014	112.280	552.93	908.86	4153.50	-6388.9852139	
	2 ³ X				Dissocia	tion			
	3 ³ X				Non-conve	rgence			
difference		/	/	/	/	/	/	/	
ТеОН	$1^2 X$	0.943	1.985	108.866	608.83	1087.87	4130.10	-6687.2972143	
		0.9525	1.984	108	582	959	3655		Ref. ³⁷
	$2^2 X$	0.944	2.001	110.772	577.78	977.33	4119.10	-6687.2859932	
				113					Ref. ³⁷
	3 ² X				Dissocia	tion			
	$1^{4}X$	0.949	2.379	102.972	386.46	717.83	4059.50	-6687.2052910	
	$2^{4}X$				Dissocia	tion			
	3 ⁴ X				Dissocia	tion			
difference		0.001	0.016	1.906	31.05	110.54	11	0.0112211	
BaOH	1 ² X	0.934	2.275	180.001	335.31	487.37	4267.44	-100.61899699	
		0.923	2.201		341.6	492.4			Exp. ³²
		0.927	2.200						Exp. ³⁸
	$2^2 X$	0.934	2.259	180.000	373.23	493.78	4253.75	-100.57513127	
	3 ² X				Non-conve	rgence			
	$1^{4}X$	0.956	2.953	112.026	157.65	355.53	3961.38	-100.49023407	
	$2^{4}X$	0.962	2.953	154.142	137.94	486.21	3905.63	-100.48812360	

	34X				Dissocia	tion			
difference		0	0.016	0.001	37.92	6.41	13.69	0.04386572	
RaOH	1 ² X	0.934	2.362	179.999	386.84	457.00	4252.83	-99.1881411	
		0.94	2.38	180.0	366	437	4243		Ref. ³⁹
	$2^2 X$	0.934	2.338	179.999	396.95	476.20	4259.38	-99.1327616	
		0.94	2.35	180.0	383	461	4248		Ref. ³⁹
	$3^2 X$				Non-conve	rgence			
	$1^4 X$	0.955	3.082	111.776	137.18	349.46	3968.80	-99.0606957	
	$2^{4}X$	0.960	3.040	154.813	134.01	461.18	3921.30	-99.0588003	
	$3^4 X$				Dissocia	tion			
difference		0.000	0.024	0.000	10.11	32.58	19.2	0.0553795	
CsOH	$1^{1}X$	0.960	2.446	180.000	280.88	304.43	3768.69	-95.33595961	
		0.960	2.391	180.000	306	335.6	3600		Ref. ²⁹
		0.957	2.658	180.000	327	336	3887		Ref. ³¹
		0.969	2.395	180.000					Exp. ⁴⁰
					304.2	335.6			Exp. ⁴¹
	$2^{1}X$	0.973	3.424	180.000	66.67	342.83	3682.63	-95.28852669	
	$3^{1}X$				Non-conve	rgence			
	$1^{3}X$				virtual freq	uency			
	2 ³ X	0.973	3.384	180.000	72.62	175.22	3682.48	-95.28901199	
	3 ³ X				Dissocia	tion			
difference		0.013	0.978	0.000	214.21	38.4	86.06	0.04743292	
FrOH	$1^{1}X$	0.964	2.515	180.000	207.85	355.62	3717.24	-94.31469397	
		0.958	2.500	180.000	313	351	3878		Ref. ³¹
	$2^{1}X$	0.976	3.90	140.932	23.56	89.01	3606.11	-94.28059596	
	$3^{1}X$								
	1 ³ X				virtual freq	uency			
	2 ³ X				virtual freq	uency			
	3 ³ X				virtual freq	uency			
difference		0.012	1.385	39.068	184.29	266.61	111.13	0.03409801	

Table S2 By using TD/DFT method implemented in Gaussian 16, the equilibrium structures and fundamental frequencies for the screened molecules (CaOH, SrOH, BaOH, RaOH, SOH, and SeOH) by MCSCF are calculated and list corresponding experimental and theoretical molecular parameters. For the H, O, S, Se and Ca, the structural parameters are calculated by B3LYP/ccpVTZ. For Sr, B3LYP/cc-pVTZ-X2C is employed, while for Ba and Ra, B3LYP/def-SVP is adopted, respectively. The blue part is the difference in bond lengths, bond angle, and vibrational frequencies between the lowest two electronic states of each molecule. The internuclear distances R_i are given in Å and the harmonic frequencies of normal mode v_l in cm⁻¹. The X represents the symmetry of state because all the calculations are carried out without symmetry.

		R _{O-H}	R _{O-M}	∠ М-О-Н	2	1	3	energy	
SOH	$1^2 X$	0.967	1.648	108.412	842.50	1179.27	3744.25	-474.0258564	
		0.963	1.647	107.4					Ref. ¹⁹
		0.963	1.645	106.4	821	1202	3729		Ref. ²⁰
	$2^2 X$	0.966	1.674	109.907	771.41	1018.94	3780.70	-474.0028341	
	3 ² X				Non-conve	rgence			
	$1^4 X$	0.972	2.085	102.317	391.39	642.49	3702.73	-473.9298231	
	$2^4 X$	1.298	1.768	91.984	661.95	968.59	2863.36	-473.81618	
	3 ⁴ X				Non-conve	rgence			
difference		0.001	0.026	1.495	71.09	160.33	36.45	0.0230223	
СаОН	$1^2 X$	0.955	1.971	180.000	334.93	633.29	3935.25	-753.5083407	
		0.930	1.976		339	606.1			Exp. ²¹
		0.922	1.985						Exp. ¹⁴
		9.333	2.0038	179.97	411/408	622	4276		Ref. ²³
		0.9562	1.9746	180.00					Exp. ²⁴
	$2^2 X$	0.955	1.963	180.000	305.67	612.94	3940.70	-753.4342936	
		0.932	1.956						Exp. ²¹
		0.9332	1.9769	179.9	402/386	646	4279		Ref. ²³
		0.9572	1.9532	180.00					Exp. ²⁴
	3 ² X	0.955	1.963	180.000	306.08	612.51	3940.76	-753.4342936	
	$1^4 X$				virtual freq	luency			
	$2^{4}X$				Non-conve	rgence			
	34X				Non-conve	rgence			
difference		0	0.008	0	29.26	20.35	5.45	0.0740471	
SeOH	$1^2 X$	0.966	1.793	107.445	697.20	1104.43	3778.11	-2477.446099	
		0.966	1.766	105.900					Ref. ²⁸
	$2^2 X$	0.966	1.817	108.786	649.68	983.89	3790.55	-2477.428654	
	3 ² X	0.970	2.157	112.755	325.61	428.73	3721.85	-2477.361816	
	$1^4 X$				Non-conve	rgence			
	$2^4 X$	1.336	1.888	92.605	590.08	889.38	2756.13	-2477.244162	
	3 ⁴ X				Non-conve	rgence			
difference		0	0.024	1.341	47.52	120.54	12.44	0.017445	
SrOH	$1^2 X$	0.955	2.112	175.974	314.06	532.55	3934.30	-3180.5297843	
		0.922	2.111	180.000	361	528			Exp. ³²
		0.945	2.102	180.000	360	522	3700		Exp. ³³
	$2^2 X$	0.955	2.103	176.789	314.06	532.55	3934.30	-3180.4659659	

		0.946	2.088	180.000					Exp. ³³
						544			Exp. ³⁴
	$3^2 X$	0.955	2.103	176.789	348.99	532.76	3934.35	-3180.4659618	
	$1^4 X$				virtual frequ	uency			
	$2^{4}X$				Non-conver	gence			
	$3^{4}X$	0.984	2.667	179.578	194.44	310.18	3388.23	-3180.332551	
difference		0	0.009	0.815	0	0	0	0.0638184	
BaOH	$1^2 X$	0.956	2.268	180.000	333.35	492.66	3910.18	-101.3022346	
		0.923	2.201		341.6	492.4			Exp. ³²
		0.927	2.200						Exp. ³⁸
	$2^2 X$	0.956	2.294	180.000	288.51	465.38	3909.37	-101.2566596	
	3 ² X	0.956	2.294	180.000	288.82	464.93	3909.36	-101.2566594	
	$1^{4}X$				virtual frequ	uency			
	$2^{4}X$				virtual frequ	uency			
	34X				virtual frequ	uency			
difference		0	0.026	0	44.84	27.28	0.81	0.045575	
RaOH	$1^2 X$	0.957	2.305	180.000	347.17	464.28	3907.73	-99.8862797	
		0.94	2.38	180.0	366	437	4243		Ref. ³⁹
	$2^2 X$	0.956	2.308	180.000	318.43	459.14	3915.16	-99.8213846	
		0.94	2.35	180.0	383	461	4248		Ref. ³⁹
	3 ² X	0.956	2.309	180.000	318.29	458.90	3915.19	-99.82138469	
	$1^{4}X$				virtual frequ	uency			
	$2^{4}X$				Non-conver	gence			
	34X	0.9818	2.976	180.000	135.1901	1840.7436	3430.6424	-99.69457468	
difference		0.001	0.003	0	28.74	5.14	7.43	0.0648951	

Table S3Fitting parameters and root mean square errors (in cm⁻¹) of the two-body terms forSOH and SeOH molecules.

	ОН	OS	HS	OSe	HSe
<i>w</i> ₃₁	1.06591068E+00	1.00574608E+00	1.28941611E+00	1.15047659E+00	8.54717421E-01
<i>w</i> ₃₂	2.21143445E+00	2.36936228E+00	1.28322974E+00	2.74767195E+00	2.04487456E+00
<i>W</i> ₃₃	1.0700000E+04	1.0700000E+04	1.07000000E+04	1.0700000E+04	1.0700000E+04
W34	2.13000000E+04	2.13000000E+04	2.13000000E+04	2.13000000E+04	2.1300000E+04
W35	2.21545177E+00	-7.77371197E+02	-7.77371197E+02	-7.77371197E+02	-7.77371197E+02
b_{21}	-5.71811388E-01	4.66510320E-05	-2.49254323E+00	-1.06317888E+00	-1.88023664E+00
b_{22}	-7.70304074E-01	-2.12340593E+00	1.36005536E+00	-3.18955667E+00	1.80319024E-01
b_{23}	-1.3900000E+05	-1.3900000E+05	-1.3900000E+05	-1.3900000E+05	-1.3900000E+05
b_{24}	1.07000000E+04	1.0700000E+04	1.0700000E+04	1.0700000E+04	1.0700000E+04
b_{25}	1.53066123E-01	6.91500843E+03	6.91500843E+03	6.91500843E+03	6.91500843E+03

<i>w</i> ₂₁₁	1.95713733E+06	3.6000000E+05	3.6000000E+05	3.59988035E+05	3.6000000E+05
<i>w</i> ₂₂₁	-3.32648081E+06	-3.43000000E+06	-3.43000000E+06	-3.43001117E+06	-3.43000000E+06
<i>w</i> ₂₃₁	-1.17737612E+05	2.22000000E+04	2.22000000E+04	2.22053930E+04	2.22000000E+04
W241	6.84871222E+04	7.97000000E+04	7.97000000E+04	7.96946072E+04	7.97000000E+04
W251	1.46416448E+06	1.71000000E+06	1.71000000E+06	1.70999471E+06	1.71000000E+06
<i>w</i> ₂₁₂	3.6300000E+02	3.6300000E+02	3.6300000E+02	3.63000000E+02	3.63000000E+02
W222	-8.83000000E+01	-8.83000000E+01	-8.8300000E+01	-8.83000000E+01	-8.83000000E+01
w ₂₃₂	3.3900000E+02	3.3900000E+02	3.3900000E+02	3.3900000E+02	3.3900000E+02
w ₂₄₂	-3.87000000E+02	-3.87000000E+02	-3.87000000E+02	-3.87000000E+02	-3.87000000E+02
w ₂₅₂	1.7600000E+02	1.7600000E+02	1.7600000E+02	1.7600000E+02	1.7600000E+02
w ₂₁₃	-2.15000000E+02	-2.15000000E+02	-4.46405211E+00	-2.15000000E+02	5.91244302E-01
w ₂₂₃	1.21000000E+02	1.21000000E+02	-2.46497333E-01	1.21000000E+02	-7.21582735E+00
w ₂₃₃	6.0900000E+02	6.0900000E+02	5.51477515E+02	6.0900000E+02	5.48594146E+02
w ₂₄₃	2.1600000E+02	2.1600000E+02	2.73766667E+02	2.1600000E+02	2.76640773E+02
w ₂₅₃	5.5200000E+02	5.52000000E+02	6.09872377E+02	5.52000000E+02	6.12790058E+02
w ₂₁₄	-8.64588828E-02	-1.33582659E+00	-8.28774067E-02	-1.31219360E+00	-4.20118859E-01
w ₂₂₄	-2.80589749E-01	4.85828089E-01	8.37718861E+00	1.23138091E+00	6.92831183E+00
w ₂₃₄	-2.61314134E+00	-2.78522735E+00	-3.07971188E-01	1.04355742E+00	-6.56828289E-01
w ₂₄₄	-3.86364216E+00	-3.96550923E+00	-6.37434225E+00	-2.55025995E+00	-6.10868815E+00
w ₂₅₄	2.47421861E+00	2.98003812E+00	4.47546797E-01	4.39551727E+00	8.50251489E-01
W215	8.22953580E+00	5.00425433E+01	1.95944107E-01	1.86209760E+01	1.28588870E+00
W225	1.35435209E+02	6.65205071E+02	5.70957924E+02	1.17032296E+03	5.71359212E+02
W235	1.02571829E+02	2.48085737E+02	2.10601378E+02	3.70297201E+02	2.10982772E+02
W245	3.39889419E+02	1.90664772E+02	2.28618845E+02	6.69954563E+01	2.28247063E+02
W255	-2.25825705E+02	-3.52482538E+02	-3.20312874E+02	-4.59539455E+02	-3.20674569E+02
b_{11}	-2.80943919E+05	-2.93000000E+05	-2.93000000E+05	-2.93005390E+05	-2.93000000E+05
b_{12}	2.1200000E+02	2.1200000E+02	2.12000000E+02	2.12000000E+02	2.1200000E+02
b_{13}	-3.94000000E+02	-3.94000000E+02	-3.37415679E+02	-3.94000000E+02	-3.34541340E+02
b_{14}	2.08477430E+00	2.27035492E+00	-3.90562152E-05	3.14744177E+00	4.46946859E-01
b_{15}	-1.59709070E+02	-3.09697301E+02	-2.71718613E+02	-4.30631042E+02	-2.72135799E+02
w_{11}	-2.42397439E+07	-2.42521021E+07	-2.40216785E+07	-2.41961889E+07	-2.38374814E+07
<i>w</i> ₁₂	-4.07397430E+07	-4.07505024E+07	-4.05220676E+07	-4.07097815E+07	-4.03446903E+07
<i>w</i> ₁₃	-4.59933523E+04	-2.63714055E+05	-8.64622576E+05	-5.89301148E+05	-2.53335992E+06
w_{14}	-1.18960173E+08	-1.18937246E+08	-1.19194641E+08	-1.18658558E+08	-1.19368457E+08
w_{15}	-2.84400943E+07	-2.84497067E+07	-2.82232051E+07	-2.82605113E+07	-2.79915772E+07
b_0	2.48397436E+07	2.48515863E+07	2.46219755E+07	2.48058139E+07	2.44213675E+07
RMS	2.478	14.930	5.125	12.757	15.830

Table S4Fitting parameters and root mean square errors (in cm^{-1}) of the three-body terms ofthe X²A" and 1²A' states for SOH and SeOH molecules.

_

|--|

	X ² A"	1 ² A'	X ² A"	1 ² A'
p_{311}	-5.13000015E+04	-5.13000000E+04	-3.92387256E+04	-4.54119603E+04
p_{321}	-9.03000265E+03	-9.03000000E+03	-7.43863342E+03	-8.14093313E+03
p_{331}	-5.96000026E+04	-5.9600000E+04	-5.73850061E+04	-5.83829127E+04
p_{341}	1.95459486E-01	2.41560916E-01	2.40454166E-01	2.42999039E-01
p_{351}	-2.09244555E-02	-3.91773924E-02	-3.51879729E-02	-4.08748796E-02
p_{361}	2.61671642E-04	1.78326436E-02	5.60913455E-03	1.53287211E-02
p_{371}	1.17655033E-01	4.48557432E-02	3.17124070E-02	-4.74199164E-03
p_{381}	-1.53545652E-01	1.51777740E-01	4.57883608E-01	3.42070857E-01
p_{391}	1.22109322E-01	4.51849634E-02	-1.92560228E-01	1.77675892E-04
p_{3101}	2.13462582E-01	1.65000400E+00	4.07111477E+05	4.07111477E+05
p_{312}	-8.66580468E-02	3.33394749E-01	3.82330362E+05	3.82330362E+05
p_{322}	-1.43045120E-01	-1.73833935E+00	-9.58973619E+05	-9.58973619E+05
p_{332}	2.39087693E-01	-1.47639703E-02	8.93789108E-02	-3.57952786E-03
p_{342}	2.15163222E-01	1.80552802E-02	9.88243926E-03	-4.57625239E-03
p_{352}	-2.69838673E-01	-3.37904008E-02	-1.10706372E-01	-7.25819206E-02
p_{362}	-3.27506461E-01	-2.72316219E-01	-3.93904709E-01	-3.03719897E-01
p_{372}	-1.56509564E+00	-5.08728564E-02	-1.71164569E-01	-5.46126337E-02
p_{382}	2.00710197E+00	6.33516889E-02	2.68573199E-01	1.01476413E-01
p_{392}	-7.71233712E-02	-5.06422352E-08	-1.76097700E-01	-8.02747396E-02
p_{3102}	-7.89962270E-03	-4.40014689E-02	-9.93604088E-03	-2.74329287E-02
p_{313}	2.77287445E-02	5.19071635E-02	1.40494047E-01	1.31107988E-01
p_{323}	2.19411294E-01	2.43174172E-01	2.43309026E-01	2.42997723E-01
p_{333}	-2.71830898E-02	-3.43940729E-02	-3.42934188E-02	-3.58679621E-02
p_{343}	1.81683799E-02	1.35024912E-02	9.36785440E-03	1.15878828E-02
p_{353}	1.84986067E+01	1.8500000E+01	1.84992936E+01	1.84992936E+01
p_{363}	1.13981795E+01	1.1400000E+01	1.13994682E+01	1.13994682E+01
p_{373}	-1.68173240E+00	-1.68000000E+00	-1.68038432E+00	-1.68038432E+00
p_{383}	-2.23865478E-01	-2.22000000E-01	-2.22424441E-01	-2.22424441E-01
p_{393}	-1.82014316E+01	-1.82000000E+01	-1.82004699E+01	-1.82004699E+01
p_{3103}	-7.53184176E+00	-7.53000000E+00	-7.53073822E+00	-7.53073822E+00
a_{21}	2.38999998E+05	2.3900000E+05	2.44901141E+05	2.40884758E+05
<i>a</i> ₂₂	-3.38130717E-01	-3.59342578E-01	-3.72991040E-01	-3.61540728E-01
<i>a</i> ₂₃	-1.06906696E-01	-1.31332871E+00	-6.51995990E-01	-1.65718190E+00
<i>a</i> ₂₄	-3.01925490E-01	-4.32372445E+00	-3.95443834E+05	-3.95443834E+05
<i>a</i> ₂₅	-3.03686562E-01	-3.34628856E-01	-2.77412678E-01	-8.02846103E-03
<i>a</i> ₂₆	9.94503179E-02	4.21527554E-01	3.79456501E-01	3.98490426E-01
<i>a</i> ₂₇	-1.18745892E-01	1.58918897E-02	7.20339877E-02	-2.95434510E-01
<i>a</i> ₂₈	-3.91855582E-01	-3.61773995E-01	-3.91715272E-01	-3.57679121E-01
<i>a</i> ₂₉	1.16997616E+02	1.17000000E+02	1.16999403E+02	1.16999403E+02
<i>a</i> ₃₀	-1.17175856E+00	-1.17000000E+00	-1.17069910E+00	-1.17069910E+00
p_{211}	-9.05216279E+00	-9.05000000E+00	-9.05040958E+00	-9.05040958E+00
<i>p</i> ₂₂₁	-1.41002326E+02	-1.41000000E+02	-1.41000694E+02	-1.41000694E+02

p_{231}	-1.47002670E+02	-1.47000000E+02	-1.47000570E+02	-1.47000570E+02
p_{241}	1.24997306E+02	1.25000000E+02	1.24999384E+02	1.24999384E+02
p_{251}	-1.29002142E+02	-1.29000000E+02	-1.29000676E+02	-1.29000676E+02
p_{261}	6.45979926E+01	6.4600000E+01	6.45995207E+01	6.45995207E+01
p_{271}	1.30998475E+02	1.31000000E+02	1.30999297E+02	1.30999297E+02
p_{281}	6.51824524E+00	6.52000000E+00	6.51934260E+00	6.51934260E+00
p_{291}	-1.74001749E+02	-1.74000000E+02	-1.74000753E+02	-1.74000753E+02
p_{2101}	1.26998063E+02	1.27000000E+02	1.26999503E+02	1.26999503E+02
p_{212}	1.03195072E-01	1.64000000E+01	1.63993623E+01	1.63993623E+01
p_{222}	1.05917895E+03	-6.56000000E+01	-6.56006402E+01	-6.56006402E+01
p_{232}	-3.30710535E+02	2.2000000E+01	2.19995933E+01	2.19995933E+01
p_{242}	6.24511949E+01	1.3900000E+02	1.38999351E+02	1.38999351E+02
p_{252}	-1.24092047E+02	-4.03000000E+02	-4.03000599E+02	-4.03000599E+02
p_{262}	-3.79852711E-01	9.73000000E+01	9.72993258E+01	9.72993258E+01
p_{272}	8.64832775E+02	3.0000000E+02	2.99999572E+02	2.99999572E+02
p_{282}	-4.07905866E+02	1.15000000E+02	1.14999339E+02	1.14999339E+02
p_{292}	5.03522682E+01	8.2600000E+01	8.25993157E+01	8.25993157E+01
p_{2102}	-4.95940901E+01	-6.6000000E+01	-6.60006240E+01	-6.60006240E+01
p_{213}	-2.25452199E+05	-1.86175928E+03	-1.06533508E+03	-2.01954135E+03
p_{223}	4.78998532E+02	-1.21401185E+03	-1.25781650E+04	-2.73034768E+03
p_{233}	1.30999760E+03	1.81764286E+02	-4.84387478E+02	-8.14081022E+01
p_{243}	2.32174857E+05	9.41258108E+02	3.09413471E+03	7.87130003E+02
p_{253}	2.08201286E+05	1.02561441E+03	-2.30646810E+03	9.08870854E+02
p_{263}	1.54275873E+05	4.52216743E+02	-7.60953945E+02	1.27839137E+03
p_{273}	-9.61821637E+04	-1.34770953E+02	-7.79690908E+02	8.37921589E+03
p_{283}	9.02981447E+01	1.74250644E+03	1.12216799E+04	-7.52804092E+01
p_{293}	-2.12841277E+05	-1.09065538E+02	-8.52793680E+02	4.85885108E+01
p_{2103}	1.73513895E+05	1.82324798E+02	-1.20637159E+03	2.42289820E+01
p_{214}	1.28999791E+03	1.2900000E+03	1.28999925E+03	1.28999925E+03
p_{224}	-2.00000225E+03	-2.00000000E+03	-2.00000076E+03	-2.00000076E+03
p_{234}	9.29997473E+02	9.3000000E+02	9.29999552E+02	9.29999552E+02
p_{244}	2.20999848E+03	2.21000000E+03	2.20999925E+03	2.20999925E+03
p_{254}	-2.55000231E+03	-2.55000000E+03	-2.55000048E+03	-2.55000048E+03
p_{264}	1.36999784E+03	1.37000000E+03	1.36999939E+03	1.36999939E+03
p_{274}	2.98999791E+03	2.99000000E+03	2.98999939E+03	2.98999939E+03
p_{284}	-2.34000243E+03	-2.34000000E+03	-2.34000071E+03	-2.34000071E+03
p_{294}	-1.31000268E+03	-1.31000000E+03	-1.31000041E+03	-1.31000041E+03
p_{2104}	3.04999858E+03	3.0500000E+03	3.04999952E+03	3.04999952E+03
p_{215}	5.62004630E+01	5.26968962E+02	5.28347806E+02	5.26264892E+02
p_{225}	3.13201978E+03	5.33400207E+02	5.24133397E+02	5.01818095E+02
p_{235}	1.96301594E+02	1.24811501E+01	3.27665190E+01	2.22660312E+01
p_{245}	-2.18413251E+02	1.84896523E+03	1.84761080E+03	1.84969710E+03
p_{255}	2.96961808E+00	-1.71670618E+02	-1.65378673E+02	-1.83294599E+02

p_2	265	-7.20905628E-02	7.36636468E+01	7.11721584E+01	7.33917212E+01
p_2	275	-1.33924327E+02	-2.71612267E+02	-1.95502261E+02	-1.77579540E+02
p_2	285	-2.74397953E+03	-4.54517368E+02	-4.95231402E+02	-4.69212039E+02
p_{2}	295	-5.51916623E+01	4.16902119E+02	4.18285710E+02	4.16199364E+02
p_2	2105	2.09309631E+01	-4.47292552E+02	-4.48676008E+02	-4.46589677E+02
p_{2}	216	1.01999984E+04	1.0200000E+04	1.01999994E+04	1.01999994E+04
p_{2}	226	-6.91000224E+03	-6.91000000E+03	-6.91000048E+03	-6.91000048E+03
p_{2}	236	-3.46000017E+04	-3.46000000E+04	-3.46000006E+04	-3.46000006E+04
p_{2}	246	2.34999977E+04	2.35000000E+04	2.34999996E+04	2.34999996E+04
p_{2}	256	-7.24000257E+03	-7.24000000E+03	-7.24000074E+03	-7.24000074E+03
p_{2}	266	-1.07000021E+04	-1.07000000E+04	-1.07000007E+04	-1.0700007E+04
p_2	276	-7.24000181E+03	-7.24000000E+03	-7.24000070E+03	-7.24000070E+03
p_2	286	-7.80000258E+03	-7.8000000E+03	-7.80000043E+03	-7.80000043E+03
p_2	296	-6.27000261E+03	-6.27000000E+03	-6.27000042E+03	-6.27000042E+03
p_2	2106	8.49999983E+04	8.50000000E+04	8.49999995E+04	8.49999995E+04
p_2	217	7.28719030E+05	5.57427587E+03	5.57427520E+03	5.57427520E+03
p_2	227	-6.69552708E+06	1.99000000E+02	1.98999523E+02	1.98999523E+02
p_2	237	-1.83151856E+06	-5.31631035E+02	-5.31631579E+02	-5.31631579E+02
p_2	247	7.95741338E+05	2.42449500E+03	2.42449454E+03	2.42449454E+03
p_2	257	-1.87459949E+06	1.32811596E+03	1.32811554E+03	1.32811554E+03
p_{2}	267	-1.69279576E+06	5.85282446E+02	5.85281835E+02	5.85281835E+02
p_2	277	3.01497081E+06	-7.21000000E+01	-7.21007502E+01	-7.21007502E+01
p_{2}	287	-1.21892719E+07	5.81000000E+01	5.80995769E+01	5.80995769E+01
p_2	297	-8.25293976E+05	2.91000000E+01	2.90995811E+01	2.90995811E+01
p_2	2107	2.20331198E+04	-4.88147365E+03	-4.88147435E+03	-4.88147435E+03
p_{2}	218	-1.18020823E+01	-1.18000000E+01	-1.18007285E+01	-1.18007285E+01
p_{2}	228	3.45998064E+02	3.4600000E+02	3.45999570E+02	3.45999570E+02
p_2	238	4.82983377E+01	4.83000000E+01	4.82993736E+01	4.82993736E+01
p_2	248	4.37923782E+05	-7.44000000E+01	-7.44007480E+01	-7.44007480E+01
p_2	258	4.39998169E+02	4.4000000E+02	4.39999410E+02	4.39999410E+02
p_2	268	3.74455196E+05	-8.38000000E+01	-8.38004916E+01	-8.38004916E+01
p_2	278	8.14982376E+01	8.15000000E+01	8.14992592E+01	8.14992592E+01
p_2	288	-2.54613001E+05	-3.83000000E+02	-3.83000449E+02	-3.83000449E+02
p_2	298	1.29986371E+01	1.3000000E+01	1.29994920E+01	1.29994920E+01
p_2	2108	4.84860982E+05	6.8600000E+01	6.85994985E+01	6.85994985E+01
p_2	219	-2.78542487E-02	-1.30431723E-01	1.27701103E-01	3.17128608E-02
p_{1}	229	1.73593721E+02	5.68536126E+01	-1.00839664E+02	1.04222688E+01
p_2	239	8.61256126E+01	1.13203995E+01	-2.36987651E+00	-2.04356476E+00
p_{1}	249	-2.19538327E+01	-2.81679738E+01	-2.93386395E+01	-2.20492064E+01
p_{2}	259	4.85803517E+01	9.30368064E+01	1.52631104E+02	3.36020386E+01
p_{2}	269	-2.98625199E-01	-3.48842625E+01	-9.85126348E+00	-3.00768619E+01
p_{2}	279	1.26837587E+02	9.98669234E+01	1.25153623E+02	4.84806612E+01
p_{2}	289	-1.98062741E+02	-9.39485828E+01	1.27332515E+02	-3.08033763E+01

p_{299}	1.52902950E+01	1.42556847E+01	1.57903299E+01	8.25783251E+00
p_{2109}	6.01915374E+00	6.99693573E+00	5.87029200E+00	1.29951406E+01
p_{2110}	2.19367752E-02	1.68302259E-01	2.96330277E-01	1.48301241E-01
p_{2210}	8.18165181E+01	9.92451539E+00	7.30020963E+00	4.87515329E+00
p_{2310}	-9.11825669E+01	-1.29057077E+01	-1.15183131E+01	-1.47021438E+01
p_{2410}	9.46042279E+00	1.70370467E+01	1.64610386E+01	1.72850669E+01
p_{2510}	-5.47545742E+01	-3.43409516E+01	-4.22683588E+01	-3.64929247E+01
p_{2610}	-1.14619294E+00	-3.60853861E+00	-2.13023214E+01	-6.46013481E+00
p_{2710}	-4.68143496E+01	-1.44256434E+01	2.41166375E-05	-1.14977181E+01
p_{2810}	1.36446992E+01	-1.20998250E+01	-2.67208636E+01	-1.90040054E+01
p_{2910}	1.44097266E+00	-1.05337750E+00	-4.83242286E-01	-1.31387465E+00
p_{21010}	-1.55827979E+00	7.99086904E-01	2.81721672E-01	1.06161788E+00
p_{2111}	7.12187932E+06	2.68000000E+06	2.6800000E+06	2.68000000E+06
p_{2211}	-1.26123623E+07	-1.6500000E+07	-1.65000000E+07	-1.6500000E+07
p_{2311}	-2.37575409E+07	-2.07000000E+07	-2.07000000E+07	-2.07000000E+07
p_{2411}	-6.68056101E+05	-2.9600000E+05	-2.96000001E+05	-2.96000001E+05
p_{2511}	-4.51594565E+06	-1.43000000E+07	-1.43000000E+07	-1.43000000E+07
p_{2611}	-3.91080675E+06	1.70000000E+05	1.69999999E+05	1.69999999E+05
p_{2711}	1.88419836E+07	-1.13000000E+06	-1.13000000E+06	-1.13000000E+06
p_{2811}	2.33156156E+07	-1.81000000E+07	-1.81000000E+07	-1.8100000E+07
p_{2911}	1.24225079E+07	1.71000000E+05	1.70999999E+05	1.70999999E+05
p_{21011}	-9.08706607E+06	-1.43000000E+05	-1.43000001E+05	-1.43000001E+05
p_{2112}	-1.62302854E-02	-1.59859337E-01	-2.95498785E-01	-1.01043214E-01
p_{2212}	7.64645470E+01	6.20645117E+01	8.86669925E+01	7.03608653E+01
p_{2312}	7.36021947E+01	1.28258481E+01	1.04720707E+01	1.23482733E+01
p_{2412}	-1.22297144E+01	-1.96903235E+01	-1.94109603E+01	-1.95179336E+01
p_{2512}	4.33845125E+01	4.83784066E+01	6.41039084E+01	4.50850961E+01
p_{2612}	1.06916789E+00	-7.05324315E+00	1.69812497E+01	-5.69021186E+00
p_{2712}	7.23596767E+01	3.20927775E+01	2.38707564E+01	2.52688501E+01
p_{2812}	-1.20968979E+02	-7.05673472E+01	-6.46822058E+01	-6.66068403E+01
p_{2912}	3.74079635E+00	4.03630747E+00	3.76142021E+00	3.86896942E+00
p_{21012}	1.28664736E+00	9.30456689E-01	1.20666828E+00	1.09749242E+00
p_{2113}	1.18998016E+02	1.48643926E+02	1.47275435E+02	1.48349423E+02
p_{2213}	2.01998157E+02	-5.84517071E+02	-5.20534418E+02	-5.64628224E+02
p_{2313}	1.58351072E-01	-1.16164092E+01	-3.31324407E+01	-2.22876908E+01
p_{2413}	-4.77022120E+01	6.27998798E+01	6.41032600E+01	6.30343142E+01
p_{2513}	5.73976614E+01	2.00931060E+02	2.02996662E+02	2.01708483E+02
p_{2613}	-5.04215981E+00	-8.06136709E+01	-7.25205432E+01	-7.63812283E+01
<i>p</i> ₂₇₁₃	1.15998290E+02	3.02342147E+02	2.23731558E+02	1.91856011E+02
p_{2813}	-1.61001882E+02	4.99254980E+02	4.97132284E+02	5.33056867E+02
p_{2913}	5.77985976E+01	8.74222235E+01	8.60613407E+01	8.71348413E+01
p_{21013}	3.36837173E+06	2.08165234E+02	2.09526855E+02	2.08453036E+02
p_{2114}	8.02984474E+01	8.0300000E+01	8.02993217E+01	8.02993217E+01

p_{2214}	5.01983161E+01	5.0200000E+01	5.01994377E+01	5.01994377E+01
p_{2314}	2.68983149E+01	2.6900000E+01	2.68995063E+01	2.68995063E+01
p_{2414}	1.24616137E-01	1.2600000E-01	1.25397896E-01	1.25397896E-01
p_{2514}	8.68985394E+01	8.6900000E+01	8.68993755E+01	8.68993755E+01
p_{2614}	6.34985638E+01	6.3500000E+01	6.34995342E+01	6.34995342E+01
p_{2714}	-3.72020552E+01	-3.72000000E+01	-3.72005947E+01	-3.72005947E+01
p_{2814}	4.23981273E+01	4.2400000E+01	4.23994693E+01	4.23994693E+01
p_{2914}	2.67639491E-01	2.7000000E-01	2.69359614E-01	2.69359614E-01
p_{21014}	-8.32021433E+01	-8.32000000E+01	-8.32007422E+01	-8.32007422E+01
p_{2115}	5.79999983E+04	5.8000000E+04	5.79999995E+04	5.79999995E+04
p_{2215}	6.76998557E+02	6.77000000E+02	6.76999405E+02	6.76999405E+02
p_{2315}	-9.21001733E+02	-9.21000000E+02	-9.21000474E+02	-9.21000474E+02
p_{2415}	-3.21001698E+02	-3.21000000E+02	-3.21000527E+02	-3.21000527E+02
p_{2515}	-9.99000223E+03	-9.99000000E+03	-9.99000074E+03	-9.99000074E+03
p_{2615}	-7.09000183E+03	-7.0900000E+03	-7.09000048E+03	-7.09000048E+03
p_{2715}	-3.73025275E+01	-3.73000000E+01	-3.73005605E+01	-3.73005605E+01
p_{2815}	-1.35000145E+03	-1.35000000E+03	-1.35000057E+03	-1.35000057E+03
p_{2915}	3.71997371E+02	3.72000000E+02	3.71999259E+02	3.71999259E+02
p_{21015}	4.21999978E+04	4.22000000E+04	4.21999993E+04	4.21999993E+04
a_{11}	-2.00002079E+02	-2.0000000E+02	-2.00000551E+02	-2.00000551E+02
a_{12}	1.50233558E+02	8.1600000E+01	8.15995124E+01	8.15995124E+01
a_{13}	-2.09494079E+05	-1.13256173E+02	2.92692794E+03	4.40831145E+01
a_{14}	-1.31000167E+03	-1.31000000E+03	-1.31000046E+03	-1.31000046E+03
a_{15}	-5.38087189E+01	4.15616894E+02	4.16999548E+02	4.14913515E+02
a_{16}	-6.29000244E+03	-6.29000000E+03	-6.29000068E+03	-6.29000068E+03
a_{17}	1.54643201E+05	1.6100000E-01	1.60588192E-01	1.60588192E-01
a_{18}	1.40981227E+01	1.41000000E+01	1.40994733E+01	1.40994733E+01
a_{19}	5.04855538E+00	3.85103664E+00	6.36042462E+00	-2.26809967E+00
a_{110}	-8.81544446E-04	-2.42170622E+00	-1.85909286E+00	-2.68296963E+00
a_{111}	-5.59928116E+06	1.71000000E+05	1.70999999E+05	1.70999999E+05
<i>a</i> ₁₁₂	2.86439498E+00	3.16618309E+00	2.89437136E+00	2.99925644E+00
<i>a</i> ₁₁₃	5.78980555E+01	8.75618496E+01	8.61995087E+01	8.72736666E+01
a_{114}	3.11997810E+02	3.12000000E+02	3.11999569E+02	3.11999569E+02
a_{115}	5.93997544E+02	5.94000000E+02	5.93999601E+02	5.93999601E+02
p_{11}	-1.59183382E+03	-2.96653904E+03	-1.58736061E+03	-3.16996900E+03
p_{12}	6.41659752E+02	3.56254595E+03	2.17350501E+03	3.75621884E+03
p_{13}	-3.33516947E+02	-6.39194578E+02	-3.35463393E+00	-9.77425317E+02
p_{14}	5.35210000E+02	-9.40935198E+02	5.65686845E+02	-1.17177588E+03
p_{15}	-6.74001926E+02	1.84959300E+04	1.76199409E+04	1.65108201E+04
p_{16}	-1.90273613E+02	-1.77211040E+03	-3.01392393E+02	-1.96421196E+03
p_{17}	4.00098985E-01	-9.57823769E+03	-8.81983319E+03	-8.75337145E+03
p_{18}	1.34685794E+03	-1.34829295E+02	1.20952637E+03	-3.10041470E+02
p_{19}	1.10072705E+03	-4.12726207E+03	-3.45816420E+02	-3.79211370E+02

p_{110}	4.27099347E+03	1.36116279E+04	1.39105947E+04	1.58084468E+04
p_{111}	-3.98485954E-01	1.82665122E+03	7.39075116E+01	2.04192763E+03
p_{112}	4.26139359E+03	1.77780623E+04	2.94878426E+04	1.73030534E+04
p_{113}	2.64767073E+03	1.62163022E+04	1.97435829E+04	1.88592962E+04
p_{114}	4.02595213E+02	1.72789961E+03	3.33380766E+02	1.92054081E+03
p_{115}	-9.02542655E-02	-9.55917140E+03	-8.80054443E+03	-8.73390162E+03
a_0	1.72234080E+03	3.17784139E+03	1.78139394E+03	3.36982493E+03
RMS	336.205	260.777	183.486	250.742

References

- 1 P. R. Bunker, P. Jensen, A. Karpfen, and H. Lischka, J. Mol. Spectrosc., 1989, 135, 89-104.
- D. McNaughton, L. M. Tack, B. Kleibömer, and P. D. Godfrey, Struct. Chem., 1994, 5, 313-319.
- 3 I. F. Chi Mbapeh, S. C. Galleguillos Kempf, and P. Jensen, *J. Phys. Chem. A*, 2015, **119**, 10112-10123.
- 4 Y. G. Abashkin and A. I. Dement'ev, J. Struct. Chem., 1982, 23, 152-154.
- 5 J. Koput, J. Comput. Chem., 2017, 38, 37-43.
- 6 Y. Yamaguchi, B. J. DeLeeuw, G. Vacek, C. A. Richards, and H. F. Schaefer III, J. Chem. Phys., 1994, 101, 3006-3017.
- 7 J. L. Gole and H. H. Michels, J. Chem. Phys., 1995, 103, 7844-7850.
- 8 J. M. Bowman, J. S. Bittman, and L. B. Harding, J. Chem. Phys., 1986, 85, 911-921.
- 9 W. J. Morgan and R. C. Fortenberry, Spectrochim. Acta Part A, 2015, 135, 965-972.
- U. Bozkaya, J. M. Turney, Y. Yamaguchi, and H. F. Schaefer III, *J. Chem. Phys.*, 2012, **136**, 164303.
- 11 P. R. Bunker, I. P. Hamilton, and P. Jensen, J. Mol. Spectrosc., 1992, 155, 44-54.
- 12 G. J. Vazquez, S. D. Peyerimhoff, and R. J. Buenker, Chem. Phys., 1985, 99, 239-257.

- 13 P. Kuijpers, T. Törring, and A. Dymanus, Chem. Phys., 1976, 15, 457-461.
- 14 B. P. Nuccio, A. J. Apponi, and L. M. Ziurys, J. Chem. Phys., 1995, 103, 9193-9199.
- 15 J. Koput, S. Carter, K. A. Peterson, and G. Theodorakopoulos, J. Chem. Phys., 2002, 117, 1529-1535.
- 16 C. Sikorska and P. Skurski, Chem. Phys. Lett., 2009, 477, 259-265.
- 17 J. S. Pilgrim, D. L. Robbins, and M. A. Duncan, Chem. Phys. Lett., 1993, 202, 203-208.
- M. C. McCarthy, F. Tamassia, D. E. Woon, and P. Thaddeus, J. Chem. Phys., 2008, 129, 184301.
- 19 C. Wilson and D. M. Hirst, J. Chem. Soc., Faraday Trans., 1994, 90, 3051-3059.
- 20 S. S. Xantheas and T. H. Dunning, J. Phys. Chem., 1993, 97, 18-19.
- 21 R. C. Hilborn, Z. Qingshi, and D. O. Harris, J. Mol. Spectrosc., 1983, 97, 73-91.
- 22 T. Kuijpers, T. Törring, A. Dymanus, Z. Naturforsch. A, 1975, 30, 1256-1260.
- 23 T. A. Isaev and R. Berger, Phys. Rev. Lett., 2016, 116, 063006.
- 24 M. Li and J. A. Coxon, J. Chem. Phys., 1996, 104, 4961-4977.
- 25 V. A. Macrae and A. J. Downs, Phys. Chem. Chem. Phys., 2004, 6, 4571-4578.
- 26 Y.-L. Teng, L. Jiang, S. Han, and Q. Xu, J. Phys. Chem. A, 2007, 111, 6225-6231.
- 27 Y. Yamaguchi and H. F. Schaefer III, J. Chem. Phys., 1996, 104, 9841-9847.
- 28 R. B. Viana, Mol. Phys., 2017, 115, 1004-1013.
- 29 D. R. Lide Jr. and C. Matsumura, J. Chem. Phys., 1969, 50, 3080-3086.
- 30 C. Matsumura and D. R. Lide Jr., J. Chem. Phys., 1969, 50, 71-75.
- 31 E. P. F. Lee, and T. G. Wrigh, J. Phys. Chem. A, 2003, 107, 5233-5240.
- 32 S. Kinsey-Nielsen, C. R. Brazier, and P. F. Bernath, J. Chem. Phys., 1986, 84, 698-708.

- 33 J. Nakagawa, R. F. Wormsbecher, and D. O. Harris, J. Mol. Spectrosc., 1983, 97, 37-64.
- 34 C. R. Brazier and P. F. Bernath, J. Mol. Spectrosc., 1985, 114, 163-173.
- 35 N. M. Lakin, T. D. Varberg, and J. M. Brown, J. Mol. Spectrosc., 1997, 183, 34-41.
- 36 N. M. Lakin, J. M. Brown, I. R. Beattie, and P. J. Jones, J. Chem. Phys., 1994, 100, 8546-8549.
- 37 V. Rai-Constapel, H.-P. Liebermann, R. J. Buenker, M. Honigmann, and P. Jensen, J. Mol. Spectrosc., 2007, 244, 102-108.
- M. A. Anderson, M. D. Allen, W. L. Barcaly, and L. M. Ziurys, *Chem. Phys. Lett.*, 1993, 205, 415-422.
- 39 T. A. Isaev, A. V. Zaitsevskii, and E. Eliav, J. Phys. B-At. Mol. Opt., 2017, 50, 225101.
- 40 D. R. Lide Jr. and R. L. Kuczkowski, J. Chem. Phys., 1967, 46, 4768.
- 41 N. Acquista, S. Abramowitz, and D. R. Lide, J. Chem. Phys., 1968, 49, 780-782.