Supplementary material for "Vibrational predissociation spectra of the ${}^{35}\text{Cl}^-(\text{H}_2)$ complex and its isotopologue ${}^{35}\text{Cl}^-(\text{D}_2)$ "

Miguel Lara-Moreno , Philippe Halvick, and Thierry Stoecklin

Université de Bordeaux, ISM, CNRS UMR 5255, 33405, Talence, France

October 23, 2020

Table S1: Variation of the A_1 rovibrational energy levels for J = 0 with respect to the number of point in the DVR grid $R \in [3, 30]$ and the number of vibrational and rotational levels of the diatom included in the calculations.

	(v, j, k)										
	(1,4,50)	(1, 5, 50)	(1, 6, 50)	(1,7,50)	(2,6,50)	(3, 6, 50)	(4, 6, 50)	(3, 6, 100)	(3, 6, 150)	(3, 6, 200)	(3, 6, 250)
Species					Rovibrat	ional energ	ies (cm^{-1})				
	-404.911	-404.915	-404.915	5 -404.915 -411.57		-411.591	-411.591	-416.547	-416.544	-416.544	-416.544
	-257.401	-257.413	-257.413	-257.413	-267.275	-267.322	-267.322	-274.763	-274.754	-274.754	-274.754
	-194.898	-194.911	-194.911	-194.911	-202.959	-202.987	-202.987	-167.388	-167.384	-167.384	-167.384
	-110.065	-110.066	-110.066	-110.066	-111.076	-111.079	-111.079	-91.605	-91.617	-91.617	-91.617
$\mathrm{Cl}^{-}(\mathrm{H}_2)$	-48.292	-48.292	-48.292	-48.292	-48.573	-48.574	-48.574	-43.250	-43.271	-43.271	-43.271
	-17.393	-17.393	-17.393	-17.393	-17.489	-17.489	-17.489	-16.576	-16.592	-16.592	-16.592
	-4.717	-4.717	-4.717	-4.717	-4.748	-4.748	-4.748	-4.677	-4.684	-4.684	-4.684
	-0.724	-0.724	-0.724	-0.724	-0.731	-0.732	-0.732	-0.736	-0.737	-0.737	-0.737
								-0.001	-0.002	-0.002	-0.002
	-503.626	-503.676	-503.676	-503.676	-511.053	-511.070	-511.070	-521.711	-521.704	-521.704	-521.704
	-388.492	-388.736	-388.741	-388.741	-406.489	-406.610	-406.611	-401.982	-401.759	-401.759	-401.759
	-317.557	-317.574	-317.574	-317.574	-320.245	-320.250	-320.250	-299.995	-299.431	-299.431	-299.431
	-181.291	-181.292	-181.292	-181.292	-182.034	-182.035	-182.035	-214.246	-214.310	-214.310	-214.310
	-95.129	-95.129	-95.129	-95.129	-95.399	-95.400	-95.400	-144.288	-145.840	-145.839	-145.839
	-74.806	-75.025	-75.027	-75.027	-76.538	-76.539	-76.539	-90.754	-93.172	-93.171	-93.171
$Cl^{-}(D_{\tau})$	-46.694	-46.695	-46.695	-46.695	-46.802	-46.802	-46.802	-74.073	-74.073	-74.073	-74.073
$OI (D_2)$	-21.061	-21.062	-21.062	-21.062	-21.113	-21.113	-21.113	-52.870	-54.973	-54.972	-54.972
	-13.306	-13.439	-13.441	-13.441	-14.390	-14.391	-14.391	-28.080	-29.302	-29.302	-29.302
	-8.348	-8.349	-8.349	-8.349	-8.371	-8.371	-8.371	-13.199	-13.700	-13.700	-13.700
	-2.753	-2.753	-2.753	-2.753	-2.760	-2.760	-2.760	-7.066	-7.066	-7.066	-7.066
	-0.606	-0.606	-0.606	-0.606	-0.608	-0.608	-0.608	-5.246	-5.404	-5.403	-5.403
	-0.073	-0.073	-0.073	-0.073	-0.074	-0.074	-0.074	-1.582	-1.625	-1.625	-1.625
								-0.283	-0.291	-0.291	-0.291

Figure S1: η -trajectories for the low lying resonant states of Cl⁻(H₂) for J = 0 and symmetry A_1 . The values of η grows exponentially according to $\log(\eta_k) = \log(\eta_{\min}) + \frac{k-1}{N} \log(\frac{\eta_{\max}}{\eta_{\min}})$ with $\eta_{\min} = 10^{-6}$, $\eta_{\max} = 31.62$ and the number of steps N = 100

Table S2: Lowest energy levels of $Cl^{-}(H_2)$ for J = 0 with their assigned vibrational quantum numbers v_1, v_2, l_2 whenever possible, parity p, representation Γ_{rovib} of the group G₄. Energies are given in cm⁻¹ with respect to the energy of separated monomers Cl^{-} and *para*-H₂. For each set of quantum numbers (v_1, v_2, l_2, p) , we give the energies of the *para* and *ortho* states whenever possible. ΔE is the energy splitting due to tunneling.

v_1	v_2	l_2	p	Energy	Γ_{rovib}	ΔE	v_1	v_2	l_2	p	Energy	Γ_{rovib}	ΔE
0	0	0	I	-416.544	A_1	8 800	7	0	0		-0.737	A_1	105 086
0 0 0	0	Ŧ	-407.655	B_2	8.890	1	0	0	Т	105.249	B_2	105.300	
1	0	0	_L_	-274.754	A_1	17.728	8	0	0	+	-0.002	A_1	113 105
T	0	0	Ŧ	-257.026	B_2		0	0			113.103	B_2	115.105
2	2 0 0 +	_L_	-167.384	A_1	<u> </u>	9	0	0	+	116.699	B_2		
2		0	I	-137.451	B_2	29.902	10	0	0	+	117.965	B_2	
3	0	0	+	-91.617	A_1	45.057	0	2	0	+	80.143	A_1	278 809
0	0	0	I	-46.560	B_2		0	2	0		358.952	B_2	210.005
4	0	0		-43.271	A_1	62 073	1	2	0	+	175.051	A_1	299.037
ч	0	0	I	18.802	B_2	02.015	T	2	0		474.088	B_2	255.001
5	0	0	1	-16.592	A_1	79 303	2	2	0		245.295	A_1	315 715
5 0	0	Ŧ	62.711	B_2	79.303	2	2	0	0 1	561.009	B_2	515.715	
6	0	0	I	-4.684	A_1	94 605	3	n	0	0 1	293.600	A_1	328 031
б О	U	+	89.921	B_2	B_2 94.605	5	2	0	Ŧ	622.531	B_2	020.001	

v_1	v_2	l_2	p	Energy	Γ_{rovib}	ΔE	v_1	v_2	l_2	p	Energy	Γ_{rovib}	ΔE
0	0	0		-521.704	A_1	0.304	11	0	0	+	-0.291	A_1	52 804
0	0 0	0	Т	-521.310	B_2	0.034	11				52.603	B_2	52.034
1	0	0		-401.759	A_1	1.024	0	0	0	+	-74.073	A_1	76 794
1	0	0	Т	-400.736	B_2		0	2			2.651	B_2	10.124
2	0	0	т.	-299.431	A_1	2 207	1	2	0	_L_	-7.066	A_1	07 538
2	0	0	I	-297.224	B_2	2.201	T	4	U	Ŧ	90.472	B_2	51.550
3	0	0	+	-214.310	A_1	4.242	2	2	0	+	46.762	A_1	116 145
0	0	0	0 1	-210.068	B_2		2	2		I	162.908	B_2	110.140
4	4 0 0	0	+	-145.839	A_1	7.457	3	2	0	+	88.708	A_1	132 219
1		0		-138.382	B_2		0	2			220.927	B_2	102.210
5	0	0	+	-93.171	A_1	12.117	4	2	0	+	120.176	A_1	145 566
0	5 0 0	0		-81.054	B_2						265.743	B_2	110.000
6	0	0	+	-54.972	A_1	18.275	5	2	0	+	142.723	A_1	156 155
Ū	0	0		-36.697	B_2			-	0		298.878	B_2	100.100
7	0	0	+	-29.302	A_1	25 658	0	4	0	+	262.554	A_1	274.567
	Ũ	Ũ	I	-3.644	B_2	20.000	0	-	Ũ	1	537.121	B_2	
8	0	0	+	-13.700	A_1	33.656	1	4	0	+	347.864	A_1	277.082
Ũ	Ũ	Ũ	I	19.956	B_2	00.000	-	-	Ũ	1	624.946	B_2	
9	0	0	+	-5.403	A_1	41.385	2	4	0	+	417.217	A_1	280.081
0	Ũ	U		35.981	B_2	41.000	-	-	0	1	697.298	B_2	-001001
10	0	0	+	-1.625	A_1	47.906	3	4	0) +	472.248	A_1	282.855
10 0	U	+	46.281	B_2	47.906	~	4	0	Ŧ	755.103	B_2	202.099	

Table S3: Lowest energy levels of $Cl^{-}(D_2)$ for J = 0 with their assigned vibrational quantum numbers v_1, v_2, l_2 whenever possible, parity p, representation Γ_{rovib} of the group G₄. Energies are given in cm⁻¹ with respect to the energy of separated monomers Cl^{-} and ortho-D₂. For each set of quantum numbers (v_1, v_2, l_2, p) , we give the energies of the para and ortho states. ΔE is the energy splitting due to tunneling.

v_1	v_2	l_2	p	Energy	Γ_{rovib}	ΔE	v_1	v_2	l_2	p	Energy	Γ_{rovib}	ΔE
0	0	0		-414.871	A_2	0 000	0	1	1		69.379	B_1	145 990
0	0 0 0	0	-	-405.972	B_1	8.899	2	1	-1	-	214.718	A_2	145.559
1	0	0		-273.282	A_2	17.754	0	1	1		69.367	B_2	145 499
1	0	0	-	-255.527	B_1		2	1		+	214.799	A_1	140.402
ე	0	0		-166.130	A_2	29.984	2	1	-1		102.909	B_1	174 966
2	0	0	-	-136.146	B_1		0			-	277.174	A_2	174.200
3	0	0		-90.599	A_2	45.144	3	1	1	_	102.898	B_2	174 351
0	0	0	0 -	-45.455	B_1		5			Ŧ	277.249	A_1	114.001
4	0 0	_	-42.500	A_2	62.202	4	1	-1	-	116.501	B_1	200 261	
т) –	19.702	B_1		т				316.762	A_2	200.201	
5	0	0	_	-16.068	A_2	79.478	4	1	1	+	116.493	B_2	200 348
0	5 0 0	0	~	63.410	B_1	10.110	т	1	1	1	316.841	A_1	200.040
6	0 0	0	_	-4.383	A_2	94.814	0	2	0	_	81.632	A_2	278 323
0	0	0		90.432	B_1		0				359.955	B_1	210.020
7	0	0	_	-0.609	A_2	106.204	1	2	0	-	176.333	A_2	298 600
•	0	0 -		105.595	B_1		1	2	0		474.932	B_1	200.000
0	1	-1	_	-79.796	B_1	85 677	2	2	0	_	246.360	A_2	315 347
0	T	1		5.881	A_2	09.011	2	2	0	-	561.707	B_1	010.011
0	1	1	+	-79.811	B_2	85 801	3	2	0	_	294.449	A_2	$328\ 592$
Ū	1	1	±	5.989	A_1	00.001	0	-	Ŭ	-	623.041	B_1	020.002
1	1	-1	_	9.710	B_1	115.551	0	3	1	+	404.326	B_2	
_	_	_		125.262	A_2	110:001	0	3	-1	-	404.742	B_1	
1	1	1	+	9.697	B_2	115.657	1	3	1	+	511.251	B_2	
	-	+	125.354	A_1	110.007	1	3	-1	-	511.706	B_1		

Table S4: Lowest energy levels of $Cl^-(H_2)$ for J = 1 with their assigned vibrational quantum numbers v_1, v_2, l_2 whenever possible, parity p, representation Γ_{rovib} of the group G₄. Energies are given in cm⁻¹ with respect to the energy of separated monomers Cl^- and para-H₂. ΔE is the energy splitting due to tunneling.

v_1	v_2	l_2	p	Energy	Γ_{rovib}	ΔE	v_1	v_2	l_2	<i>p</i>	Energy	Γ_{rovib}	ΔE
0	0	0	_	-520.792	A_2	0 395	2	1	_1	_	-69.079	B_1	28 570
0	0 0	-	-520.398	B_1	0.555	2	1	-1	-	-40.508	A_2	20.010	
1	0	0		-400.916	A_2	1.025	ე	1	1	+	-69.081	B_2	28 501
T	0	0	-	-399.892	B_1	1.025	2	1	1		-40.490	A_1	20.091
2	0	0		-298.660	A_2	2 210	3	1	1		-16.262	B_1	41.060
2	0	0	-	-296.450	B_1	2.210	0	1	-1	-	25.707	A_2	41.000
3	0	0	_	-213.616	A_2	$\begin{array}{c} A_2 \\ B_1 \end{array} \qquad 4.248$	ર	1	1	_L	-16.264	B_2	11 008
0	0	0	_	-209.368	B_1		5	T	T	I	25.734	A_1	41.550
4	0	0	_	-145.227	A_2	7 460	А	1	1	_	20.427	B_1	56 631
ч	0	0		-137.758	B_1 (.409	ч	T	-1		77.058	A_2	50.051	
5	0	0	_	-92.645	A_2	19 138	4	1	1	+	20.425	B_2	56 676
0	0	0		-80.507	B_1	12.100	т	1	-	I	77.101	A_1	50.010
6	0	0	_	-54.537	A_2 18 309	5	1	-1	1 -	43.264	B_1	71 788	
0	0 0	0	-36.228	B_1	10.000	0	1			115.052	A_2	(1.100	
7	0	0	-	-28.960	A_2	25.708	5	1	1	+	43.261	B_2	71.866
•	1 0	0		-3.252	B_1		0	1	1	1	115.127	A_1	11.000
8	8 0 0	0	-	-13.450	A_2	$\frac{4_2}{B_1}$ 33.722	6	1	-1		55.123	B_1	86 388
0		0		20.273	B_1		0	1	_		141.511	A_2	00.000
9	0	0	0 -	-5.237	A_2	41.466	6	1	1	+	55.121	B_2	86 590
0	0	0		36.229	B_1		0	1	1	I	141.711	A_1	00.000
10	0	0	0 -	-1.527	A_2	$A_2 = 47.994 = B_1$	0	2	0	0 -	-73.299	A_2	76 716
10	0	0		46.467	B_1		0	2	0		3.416	B_1	10.110
11	0	0	_	-0.250	A2 52.087	1	2	0	_	-6.370	A_2	97 587	
	Ŭ	Ŭ		52.737	B_1	02.001	-	-	0		91.217	B_1	01.001
12	0	0	-	56.392	B_1		2	2	0	_	47.381	A_2	116 232
13	0	0	-	58.337	B_1		-	-	0		163.613	B_1	110.202
0	1	-1	_	-230.373	B_1	8 350	3	2	0	_	89.257	A_2	132 331
0	1	1	-	-222.023	A_2	0.000	0	-	0		221.588	B_1	102.001
0	1	1	+	-230.374	B_2	8 359	4	2	0	_	120.675	A_2	145 704
0	0 1	1	I	-222.015	A_1	0.009	-	-	0	-	266.379	B_1	110.101
1	1	-1	-	-139.901	B_1	17 131	0	3	-1	_	82.887	B_1	$176\ 337$
Ŧ	T	Ŧ		-122.771	A_2	11.101	0	5	-1	T -	259.224	A_2	110.001
1	1	1	+	-139.903	B_2	17 145	Ο	3	1	+	82.879	B_2	178 788
1 1	Ŧ	+	-122.758	A_1 17.145	0	ა	1	+	261.667	A_1	1/8./88		

Table S5: Lowest energy levels of $\operatorname{Cl}^-(D_2)$ for J = 1 with their assigned vibrational quantum numbers v_1, v_2, l_2 whenever possible, parity p, representation Γ_{rovib} of the group G₄. Energies are given in cm⁻¹ with respect to the energy of separated monomers Cl⁻ and ortho-D₂. ΔE is the energy splitting due to tunneling.

Figure S2: Partition functions for ${}^{35}Cl^-(H_2)$ at 8 or 22 K, including both *ortho* and *para* species in a 3:1 ratio, versus the maximal value of the total angular momentum.

Figure S3: Partition functions for ${}^{35}Cl^{-}(D_2)$ at 8 or 22 K, including both *ortho* and *para* species in a 2:1 ratio, versus the maximal value of the total angular momentum.

Figure S4: Comparison between the experimental (black) and the convolved theoretical predissociation spectra (orange) of $Cl^{-}(H_2)$ at 22 K, assuming a linewidth broadening of about 1 cm⁻¹. The theoretical stick spectrum is also shown, in red for the P band and green for the R band. The theoretical spectra are shifted to the blue by 8 cm⁻¹. All spectra are normalized to unity at the maximum.

Figure S5: Comparison between the experimental (black) and the convolved theoretical predissociation spectra (orange) of $Cl^{-}(D_2)$ at 8 K, assuming a linewidth broadening of about 1 cm⁻¹. The theoretical stick spectrum is also shown, in red for the P band and green for the R band. The theoretical spectra are shifted to the blue by 8 cm⁻¹. All spectra are normalized to unity at the maximum.

Figure S6: Calculated equilibrium constant for the ligand exchange reactions.