Supporting Information

Orientation and Dynamics of Cu²⁺ Based DNA Label from Force Field Parameterized MD Elucidates the Relationship Between EPR Distance Constraints and DNA Backbone Distances

Shreya Ghosh^a, Joshua Casto^a, Xiaowei Bogetti^a, Charu Arora^a, Junmei Wang^{*b} and Sunil Saxena^{*a}

^{a.} Department of Chemistry, University of Pittsburgh, PA 15260, USA. Email: sksaxena@pitt.edu

^b Department of Pharmaceutical Sciences, University of Pittsburgh, PA 15206, USA. Email: junmei.wang@pitt.edu

Force field parameters of Cu2+-DPA and dSpacer

0 0 2											
This	is a r	emark	line	9							
dpa.res											
DPA	INT	0									
CORRE	СТ	OMIT	DU	BEG							
0.0	000										
1	DUMM	DU	М	0	-1	-2	0.000	.0	.0	.00000	
2	DUMM	DU	М	1	0	-1	1.449	.0	.0	.00000	
3	DUMM	DU	М	2	1	0	1.523	111.21	.0	.00000	
4	P2	Ρ	М	3	2	1	1.540	111.208	-180.000	1.369015	
5	06	02	E	4	3	2	1.503	138.219	-132.370	-0.834137	
6	07	02	Ε	4	3	2	1.504	69.118	111.415	-0.834137	
7	05	OS	М	4	3	2	1.666	41.750	-83.842	-0.434069	
8	C13	СТ	М	7	4	3	1.423	117.834	24.136	-0.069712	
9	H20	H1	Ε	8	7	4	1.097	110.010	-66.592	0.048214	
10	H21	H1	Ε	8	7	4	1.098	110.806	53.014	0.048214	
11	C11	СТ	М	8	7	4	1.529	108.550	172.648	0.523010	
12	C16	СТ	3	11	8	7	1.537	108.764	164.916	-0.072228	
13	N1	NЗ	S	12	11	8	1.502	117.117	176.539	0.060271	
14	Cu1	Cu	3	13	12	11	2.010	102.855	163.593	0.930057	
15	N2	NX	S	14	13	12	1.966	84.525	-91.969	-0.533625	
16	C2	CA	В	15	14	13	1.354	112.881	-12.764	0.418204	
17	C1	СТ	В	16	15	14	1.508	115.313	-6.306	-0.382868	
18	H1	HP	Ε	17	16	15	1.096	108.214	-86.447	0.166229	
19	Н2	HP	Ε	17	16	15	1.096	112.326	155.202	0.166229	
20	C3	CA	В	16	15	14	1.390	121.578	176.281	-0.248187	
21	ΗЗ	HA	Ε	20	16	15	1.084	119.664	-179.204	0.194440	
22	C4	CA	В	20	16	15	1.395	118.963	0.690	0.058679	
23	H4	HA	Ε	22	20	16	1.085	120.170	179.937	0.169276	
24	C5	CA	В	22	20	16	1.395	119.256	-0.439	-0.273038	
25	Н5	HA	Ε	24	22	20	1.084	121.597	-179.698	0.185970	
26	C6	CA	S	24	22	20	1.389	118.706	-0.256	0.188894	
27	НG	H4	Ε	26	24	22	1.082	121.359	-179.268	0.067462	
28	NЗ	ΝZ	S	14	13	12	1.959	84.734	94.839	-0.533625	
29	C8	CA	В	28	14	13	1.353	113.489	10.902	0.418204	
30	C7	СТ	В	29	28	14	1.509	115.858	5.706	-0.382868	
31	H7	HP	Ε	30	29	28	1.090	112.312	-149.878	0.166229	
32	Н8	HP	Ε	30	29	28	1.095	108.521	91.444	0.166229	
33	С9	CA	В	29	28	14	1.391	121.329	-176.852	-0.248187	
34	Н9	HA	Ε	33	29	28	1.085	119.725	179.384	0.194440	
35	C10	CA	В	33	29	28	1.394	119.024	-0.668	0.058679	
36	C14	CA	В	35	33	29	1.395	119.252	0.461	-0.273038	
37	H10	HA	Ε	36	35	33	1.084	121.472	179.710	0.185970	
38	C15	CA	S	36	35	33	1.388	118.813	0.200	0.188894	
39	H11	H4	Ε	38	36	35	1.082	122.105	179.267	0.067462	
40	H22	HA	Ε	35	33	29	1.085	120.171	-179.944	0.169276	
41	09	OW	В	14	13	12	2.017	169.111	13.639	-0.592041	
42	H18	hw	Ε	41	14	13	0.973	121.699	-173.567	0.414588	
43	Н19	hw	Ε	41	14	13	0.972	120.565	-33.308	0.414588	
44	H24	HP	Ε	12	11	8	1.094	107.367	-62.153	0.030515	
45	H25	HP	Ε	12	11	8	1.094	110.203	54.612	0.030515	

Residue Topology of Cu²⁺-DPA-WAT₁

46	Н23	H1	Ε	11	8	7	1.093	108.135	45.383	0.020529
47	01	OS	М	11	8	7	1.427	109.983	-73.869	-0.408523
LOOP										
C1	N1									
С7	N1									
C6	N2									
C15	NЗ									
IMPRO	PER									
C2	C6	N2	Cu1							
С3	C1	C2	N2							
C2	C4	C3	НЗ							
C3	C5	C4	H4							
C4	C6	C5	Н5							
C5	НG	C6	N2							
C8	C15	NЗ	Cu1							
С9	C7	C8	NЗ							
C8	C10	С9	Н9							
С9	C14	C10	H22							
C10	C15	C14	H10							
C14	H11	C15	NЗ							
DONE										
STOP										

Residue Topology of dSpacer

0	C) 2								
This	is a	remark	line							
DSP.r	es									
DSP	INT	0								
CORRE	СТ	OMIT	DU	BEG						
0.0	000									
1	DUMM	1 DU	М	0	-1	-2	0.000	.0	.0	.00000
2	DUMM	1 DU	М	1	0	-1	1.449	.0	.0	.00000
3	DUMM	1 DU	М	2	1	0	1.523	111.21	.0	.00000
4	P2	Р	М	3	2	1	1.540	111.208	-180.000	1.295965
5	04	02	Ε	4	3	2	1.473	54.315	-77.788	-0.826887
6	06	02	Ε	4	3	2	1.478	93.607	49.757	-0.826887
7	03	OS	М	4	3	2	1.619	155.989	-126.296	-0.522060
8	C5	CT	М	7	4	3	1.401	120.164	-146.267	0.096810
9	H4	H1	Ε	8	7	4	1.085	109.662	-60.978	0.033214
10	H5	H1	Ε	8	7	4	1.086	110.081	57.875	0.033214
11	C1	СТ	М	8	7	4	1.521	109.828	178.845	0.389113
12	01	OS	S	11	8	7	1.420	110.213	-63.586	-0.523884
13	C4	СТ	3	12	11	8	1.403	110.936	-121.973	0.146514
14	C3	CT	В	13	12	11	1.521	105.399	23.279	-0.038815
15	Н9	HC	Ε	14	13	12	1.087	110.254	79.352	0.013253
16	H10	HC	Ε	14	13	12	1.081	113.757	-157.319	0.013253
17	H2	H1	Ε	13	12	11	1.086	108.288	145.251	0.027202
18	HЗ	H1	Ε	13	12	11	1.086	110.563	-96.056	0.027202
19	H1	H1	Ε	11	8	7	1.082	109.213	55.803	0.019398
20	C2	CT	М	11	8	7	1.539	112.747	178.156	0.161221
21	H14	Н1	Ε	20	11	8	1.081	112.923	-24.157	0.031635
22	09	OS	М	20	11	8	1.408	108.473	-145.576	-0.549462
LOOP										

C2 C3 IMPROPER DONE STOP

Key Force Field Parameters of Cu²⁺-DPA-WAT₁

Remark line	e goes he	ere							
MASS									
Cu 63.010	0	.000							
NX 14.010	0	.530			Sa	ame a	as nc		
NZ 14.010	0	.530			Sa	ame a	as nc		
hw 1.008	0	.000			Н	in '	TIP3P wat	ter	
ow 16.00	0	.000			02	xygei	n in TIP:	3P water	
BOND									
Cu-N3 47.	11 2.	010		calcula	ated	for	Cu-N3		
Cu-NX 52.	79 1.	966		calcula	ated	for	Cu-NX		
Cu-NZ 53.	77 1.	959		calcula	ated	for	Cu-NZ		
Cu-ow 39.	51 2.	017		calcula	ated	for	Cu-OX		
CA-NX 394.	60 1.	352		same as	s ca	-nc,	penalty	score=	0.0
CA-NZ 394.	60 1.	352		same as	s ca	-nc,	penalty	score=	0.0
ow-hw 553.	0.	9572	!	TIP3P v	vate	r			
hw-hw 553.	0 1.	5136		TIP3P v	vate	r			
ANGLE									
CT-N3-Cu	20.541	105.	.10	2					
N3-Cu-NX	45.470	84.	. 52	7					
N3-Cu-NZ	45.491	84.	.73	4					
N3-Cu-ow	31.748	169.	.10	9					
NX-Cu-NZ	32.749	167.	.29	1					
NX-Cu-ow	42.088	98.	.29	8					
NZ-Cu-ow	43.223	93.	.51	3					
CA-NX-Cu	19.811	120.	.22	7					
CA-NZ-Cu	19.891	120.	.08	0					
Cu-ow-hw	11.709	121.	.13	0					
CA-CT-N3	81.700	113.	. 80	0					
CT-CA-NX	85.113	115.	.31	7					
CA-CA-NX	87.600	119.	.72	0					
H4-CA-NX	63.000	118.	.36	0					
CA-NX-CA	72.000	109.	. 95	0					
CA-CT-HP	47.300	110.	. 47	0					
CT-CA-NZ	84.914	115.	.85	8					
CA-CA-NZ	87.600	119.	.72	0					
H4-CA-NZ	63.000	118.	.36	0					
CA-NZ-CA	72.000	109.	. 95	0					
hw-ow-hw	100.	104.	. 52						
hw-hw-ow	0.	127.	.74						
DIHE									
NX-Cu-N3-C1	1	0.000		0	.000		2	.000	
NZ-Cu-N3-C1	1	0.000		0	.000		2	.000	
ow-Cu-N3-C1	1	0.000		0	.000		2	.000	
N3-Cu-NX-CA	A 1	0.000		0	.000		2	.000	
N3-Cu-NZ-CA	A 1	0.000		0	.000		2	.000	
N3-Cu-ow-hv	1	0.000		0	.000		2	.000	
CT-CA-NX-Cu	ı 2	9.600		180	.000		2	.000	

CA-CA-NX-Cu	2	9.	600	180.000	2.000
H4-CA-NX-Cu	2	9.	600	180.000	2.000
CT-CA-NZ-Cu	2	9.	600	180.000	2.000
CA-CA-NZ-Cu	2	9.	600	180.000	2.000
H4-CA-NZ-Cu	2	9.	600	180.000	2.000
NX-Cu-NZ-CA	1	Ο.	000	0.000	2.000
NX-Cu-ow-hw	1	Ο.	000	0.000	2.000
CA-CA-NX-CA	2	9.	600	180.000	2.000
H4-CA-NX-CA	2	9.	600	180.000	2.000
CT-CA-NX-CA	2	9.	600	180.000	2.000
NZ-Cu-NX-CA	1	Ο.	000	0.000	2.000
NZ-Cu-ow-hw	1	Ο.	000	0.000	2.000
CA-CA-NZ-CA	2	9.	600	180.000	2.000
H4-CA-NZ-CA	2	9.	600	180.000	2.000
CT-CA-NZ-CA	2	9.	600	180.000	2.000
ow-Cu-NX-CA	1	Ο.	000	0.000	2.000
ow-Cu-NZ-CA	1	Ο.	000	0.000	2.000
hw-hw-ow-Cu	1	Ο.	000	0.000	2.000
IMPROPER					
CA-CA-NX-Cu		1	.1	180.0	2.0
CA-CT-CA-NX		1	.1	180.0	2.0
СА-СА-СА-НА		1	.1	180.0	2.0
CA-H4-CA-NX		1	.1	180.0	2.0
CA-CA-NZ-Cu		1	.1	180.0	2.0
CA-CT-CA-NZ		1	.1	180.0	2.0
CA-H4-CA-NZ		1	.1	180.0	2.0
NONBON					
Cu	2.2	100	0.1729		
NX	1.8	993	0.0941		
ΝZ	1.8	993	0.0941		
OW	1.8	200	0.0930		
hw	0.3	019	0.0047		

Comparison of distance distribution from MD simulations and experiment

Figure S1: $Cu^{2+}-Cu^{2+}$ distance distribution from 2 µs MD simulations (grey) and experiment (black) for duplexes with base pair separation of A) n=9 B) n=10 C) n=11 and D) n=12. The most probable distance agrees within 2 Å between the two.

Distance distribution from MD simulations at different time intervals

Figure S2: Comparison of distance distributions from initial 100 ns (red), initial 1 μ s (black) and 2 μ s (grey) simulations for duplexes with base pair separation of A) n=9 B) n=10 C) n=11 and D) n=12. The most probable distance of the three distributions agree within 2 Å.

Analysis of angle of natural base with respect to the DNA backbone

We performed molecular dynamics (MD) simulations on an unlabeled DNA duplex. The duplex has the same sequence as the labeled DNA, except the Cu²⁺-DPA and dSpacer sites were replaced by adenine and thymine, respectively. The DNA was created using the Nucleic Acid Builder (NAB) module in the AMBER suite¹. The duplex was then solvated in an explicit 12 Å water box using the TIP3P water model². Na⁺ and Cl⁻ ions were then added to neutralize the system. All simulations were performed using the pmemd program in the AMBER16 software package³ and using the AMBER parmbsc1 (bsc1) force field⁴. The solvated system was optimized, thermalized and pre-equilibrated for 2 ns before initiating the unrestrained production MD run of 1 μ s at 298.15 K. Periodic boundary conditions along with particle mesh ewald (PME)⁵ were applied to account for long-range electrostatic interactions under NPT (P=1 atm) conditions. SHAKE⁶ was then used to restrain on bonds involving hydrogens along with an integration step of 2 fs and a nonbonded cut-off of 10 Å. All visualizations of the simulations were done on VMD⁷. From the MD trajectories, angle between a natural base and the DNA backbone was analyzed. We considered the angle between the C4' atom of base *i*, C4' atom of base *i*+1 and the atom at the interior of the base *i*+1.

Figure S3: A) Angle between C4' atom of base *i*, C4' atom of base *i*+1 and atom of base *i*+1 present at the interior of the duplex. B) The angle, measured between 3 different consecutive bases (represented by solid, dashed, and dotted lines), give a most probable angle of ~ 73° .

Calculation of Cu²⁺-proton distance from HYSCORE spectrum

Figure S4: HYSCORE spectrum of Cu²⁺-DPA-DNA duplex. The solid black line shows the anti-diagonal, and the red arrows indicate the maximum shift from the anti-diagonal, denoted as Δv_{max} .

In order to estimate Cu²⁺-water bond length, we calculated the maximum shift from the anti-diagonal, Δv_{max} in the HYSCORE spectrum. The value of Δv_{max} (shown in Figure S4) was found to be 1.5 MHz. The dipolar coupling constant, T, using the equation is given by⁸

$$T = \frac{4}{3} \sqrt{\frac{2\nu_I \Delta \nu_{max}}{\sqrt{2}}}$$

where v_l is the nuclear Larmor frequency.

Using the above equation, we obtained T = 5.1 MHz. Previous HYSCORE studies have shown that T for protons of equatorially coordinated water have a value of 4.8-5.2 MHz^{9,10}. Finally, we calculated the distance between $Cu^{2+}-H$ using the following equation¹¹:

$$T = \frac{\mu_0}{4\pi} g_e g_n \beta_e \beta_n \frac{1}{r^3}$$

Applying the above equation and using our calculated T value, we obtained a Cu²⁺-H distance of ~2.5 Å. The DFToptimized structure yielded an average value of 2.4 Å for the two protons on the equatorially coordinated water molecule. Thus, the HYSCORE results agree well with the DFT-structure.

References

- D. A. Case, T. E. Cheatham III, T. Darden, H. Gohlke, R. Luo, K. M. Merz Jr., A. Onufriev, C. Simmerling, B.
 Wang and R. J. Woods, The Amber biomolecular simulation programs, *J. Comput. Chem.*, 2005, 26, 1668–1688.
- 2 W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey and M. L. Klein, Comparison of simple potential functions for simulating liquid water, *J. Chem. Phys.*, 1983, **79**, 926–935.
- 3 D. Case, R. Betz, W. Botello-Smith, D. Cerutti and T. Darden, Amber 16, Univ. California, San Fr.
- I. Ivani, P. D. Dans, A. Noy, A. Pérez, I. Faustino, A. Hospital, J. Walther, P. Andrio, R. Goñi, A. Balaceanu, G. Portella, F. Battistini, J. L. Gelpí, C. González, M. Vendruscolo, C. A. Laughton, S. A. Harris, D. A. Case and M. Orozco, Parmbsc1: a refined force field for DNA simulations, *Nat. Methods*, 2016, 13, 55–58.
- 5 T. Darden, D. York and L. Pedersen, Particle mesh Ewald: An *N* ·log(*N*) method for Ewald sums in large systems, *J. Chem. Phys.*, 1993, **98**, 10089–10092.
- J. P. Ryckaert, G. Ciccotti and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, *J. Comput. Phys.*, 1977, **23**, 327–341.
- 7 W. Humphrey, A. Dalke and K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph., 1996, 14, 33–38.
- 8 P. M. Schosseler, B. Wehrli and A. Schweiger, Complexation of Copper(II) with Carbonate Ligands in Aqueous Solution: A CW and Pulse EPR Study, *Inorg. Chem.*, 1997, **36**, 4490–4499.
- 9 C. S. Burns, E. Aronoff-Spencer, C. M. Dunham, P. Lario, N. I. Avdievich, W. E. Antholine, M. M. Olmstead, A. Vrielink, G. J. Gerfen, J. Peisach, W. G. Scott and G. L. Millhauser, Molecular features of the copper binding sites in the octarepeat domain of the prion protein, *Biochemistry*, 2002, **41**, 3991–4001.
- 10 M. G. Santangelo, A. Medina-Molner, A. Schweiger, G. Mitrikas and B. Spingler, Structural analysis of Cu(II) ligation to the 5'-GMP nucleotide by pulse EPR spectroscopy, *J. Biol. Inorg. Chem.*, 2007, **12**, 767–775.
- 11 S. Maurelli, M. Ruszak, S. Witkowski, P. Pietrzyk, M. Chiesa and Z. Sojka, Spectroscopic CW-EPR and HYSCORE investigations of Cu2+ and O2- species in copper doped nanoporous calcium aluminate (12CaO·7Al2O3), *Phys. Chem. Chem. Phys.*, 2010, **12**, 10933–10941.