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Fourier Interpolation

In order to introduce the main ideas behind Fourier
interpolation within BoltzTraP, let us consider NKS KS
eigenvalues for a given band n of a three-dimensional
(3D) periodic solid. The symmetry of the crystal’s recip-
rocal space is incorporated in the energy bands. There-
fore, it is natural to use star functions, Υm(k), as basis
set to Fourier expand the quasi-particles energies

ε̃k =
M

∑
m=1

amΥm(k) , (1)

where

Υm(k) =
1
ns

∑
{υ}

exp[i(υRm) · k] , (2)

with the sum running over all ns point group opera-
tions {υ} on the direct lattice translations, Rm. The first
derivatives are straightforwardly given by

vk =
∂ε̃k
∂k

=
i

ns

M

∑
m=1

am ∑
{υ}

(υRm) exp[i(υRm) · k] , (3)

in which the main problem is the determination of
Fourier coefficients, am.

BoltzTraP relies on the proposal by Shankland [1],
according to which one should choose a set of basis
functions for interpolation larger than the number of
data points (M > NKS) and constrain the interpolation
function to pass exactly through such points. In order
to obtain a smooth interpolation, the extra basis func-
tions are used to minimize a roughness function suitably
defined by Pickett, Krakauer and Allen [2]

Re =
M

∑
m=2
|am|2ρ(Rm) (4)

with

ρ(Rm) =

(
1− c1

(
Rm

Rmin

)2
)2

+ c2

(
Rm

Rmin

)6
, (5)

where Rm = |Rm|, Rmin is the magnitude of the small-
est nonzero lattice vector, and c1 = c2 = 3/4. Thus,
the Lagrange multiplier method can now be used since
the formulated problem is to minimize Re subject to
the constraints, ε̃kl

= εkl
, with respect to the Fourier

coefficients. From such minimization one obtains

am =

{
ρ(Rm)−1 ∑NKS−1

l=1 λ∗l
[
Υ∗m(kl)− Υ∗m(kNKS)

]
, m > 1,

εkNKS
−∑M

m=2 amΥm(kNKS), m = 1,
(6)

in which the Lagrange multipliers, λ∗l , can be evaluated
from

εkp − εkNKS
=

NKS−1

∑
l=1

Hplλ
∗
l , (7)

with

Hpl =
M

∑
m=2

[
Υm(kp)− Υm(kNKS)

] [
Υ∗m(kl)− Υ∗m(kNKS)

]
ρ(Rm)

.

(8)

Anisotropic k-mesh

In practice, a finer and anisotropic k-mesh can be
generated for the interpolation. To acomplish this, lat-
tice points and their respective star functions are gener-
ated in real space following point the group operations
of the crystal symmetry. The corresponding transla-
tion vector can be given as R = u1a1 + u2a2 + u3a3, in
which a1, a2, a3 are related to the crystal primitive vec-
tors. Such points are generated inside a sphere of a

radius R′ = 3
√

3 · nkpt · (M/NKS) ·Ω/4π, where nkpt is
the number of k-points of the original k-mesh in the
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entire BZ, (M/NKS) is the required number of star func-
tions per k-point and Ω is the volume of the unit cell.
Consequently, R′ determines the full extension of the
real space and can be properly changed, for example, by
increasing the number of star functions per k-point. The
corresponding reciprocal lattice, with a translation vec-
tor, k = k1b1 + k2b2 + k3b3 can be determined by gener-
ating its three primitive vectors from the direct ones from
[b1b2b3]

T = [a1a2a3]
−1, in which the 2π factor was

omitted following the crystallographic definition of re-
ciprocal space. In order to capture the crystal anisotropy,
the extension of the real space can be determined for
each crystal direction, defining spheres for each crys-
tallographic axis with the maximum radius given by
Rmax(t) = INT(R′ ·

√
bt · bt) + 1, with t = {1, 2, 3} and

INT(x) gives the largest integer number that does not
exceed the magnitude of x. Hence, lattice points fill all
the spheres space inside the {−Rmax(t), Rmax(t)} range.
Within BoltzTraP, a 3D array containing all vectors are
sorted considering their concentric radius, r, from the
sphere center, and providing that all vectors, R, have
different star functions, m. In practice, to determine all
k vectors from Rm, a 3D Fast Fourier Transform (FFT)
is performed, being possible to redefine a finer and
anisotropic k-mesh.

The magnitude of each Rm vector, r, is defined
through the metric tensor formalism. Let us consider
the scalar product of two arbitrary vectors in the coor-
dinate system of the real space, r1 · r2 = (x1a1 + y1a2 +
z1a3) · (x2a1 + y2a2 + z2a3). In the matrix notation this
is written as

r1 · r2 =
[
x1 y1 z1

] a1 · a1 a1 · a2 a1 · a3
a2 · a1 a2 · a2 a2 · a3
a3 · a1 a3 · a2 a3 · a3

x2
y2
z2


= X̄1GX2. (9)

Considering that r1 = r2 = Rm, the magnitude of the
real space vector is given by r =

√
X̄GX, with X̄ =

[u1u2u3]. For all Rm in the Bravais lattice, the reciprocal
lattice is characterized by a set of wavevectors k, such
that, e2πik·Rm = 1. Given Rm and k in the same direction,
the magnitude of the vector k in the reciprocal space
is given by |k| = (k1u1 + k2u2 + k3u3)/r = (nint(1) +
nint(2) + nint(3))/r, where nint(t) = 1, 2, ..., kmax(t) are
integer numbers with kmax(t) = 2Rmax(t) + 1 defining
the k-mesh grid. In practice, kmax(t) should be carefully
taken as the product of small primes in order to improve
the efficiency of FFT. If we consider just one specific
crystallographic axis, the magnitude of the k vector can
be determined for each axis by |k|t = kt = nint(t)/r.
Hence, through the definition of anisotropic k-mesh the
anisotropy of materials TE properties can be captured.

Scattering Mechanisms and the RTA

Within the Born approximation in the scattering the-
ory, the magnitude of the Hamiltonian of the charge car-
rier interaction, H′, is considered to deviate only slightly
from the magnitude of the non-perturbed Hamiltonian,
H, that is, H′ − H << H. The transition probability
per-unit-time between Bloch states Ψj,k′ and Ψn,k can
be obtained from the first order perturbation theory
(Fermi’s golden rule)

W(n, k|j, k′) =
2π

h̄
|〈Ψj,k′ |H′|Ψn,k〉|2δ(εj,k′ − εn,k) ,

(10)
which is valid in the so-called weak coupling regime [3].
Integrating out such probability over the BZ, the total
scattering rate is obtained. Specifically, in the presence
of a phonon field, an electron in the Bloch state Ψn,k
will experience a perturbation H′, inducing a transition
to the state Ψj,k′ . In such a process, momentum and
energy are conserved so that k′ = k ± q and εj,k′ =

εn,k ± h̄ωλ
q , where ωλ

q is the phonon frequency with
wave vector q and mode number λ. The plus-minus sign
refers to phonon absorption or emission, respectively.
The respective per-unit-time transition probability is
calculated from Eq. (10) as

W(n, k|j, k± q) =
2π

h̄
|〈Ψj,k±q|H′

λ
q|Ψn,k〉|2

δ(εj,k±q − εn,k ∓ h̄ωλ
q) . (11)

By using the above equations along with Eq. (10) of the
main text, expressions for the different scattering mech-
anisms RTs can be derived, mostly following Ref. [4], as
will be discussed below.

Carrier-Acoustic Phonons Non-polar Scattering

The deformation potential technique, as introduced by
Bardeen and Shockley [5] and extended by Herring and
Vogt [6] has been used to derive an expression for the RT
for the non-polar scattering of charge carrier by acoustic
phonons. When an acoustic wave with vanishing q
vector travels through a finite crystal it may induce shifts
in the spacing between neighboring atoms, resulting in
local fluctuations of the energy band gap. These are
known as acoustic deformation potentials (ADPs), which
can be measured by quantifying the energy variation
of the valence and conduction band edges per unit of
strain. The former variation represents the interaction
energy of holes with lattice oscillations. The magnitude
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of the shifts, us, are given in terms of plane waves as

us(r) =
1√
N

∑
q

3

∑
λ=1

eλ(q)·[
bλ,q exp{(iq · r)}+ b∗λ,q exp{(−iq · r)}

]
, (12)

where r are the atomic coordinates in real space, N is
the number of atoms in the periodic crystal, eλ(q) is the
polarization unit vector and bλ,q are the complex normal
coordinates. In Eq. (12), all atoms in the elementary unit
cell oscillate in phase and the interaction energy must
be proportional to the first derivative of the us(r) with
respect to r

H′ac = E1∇us(r) , (13)

where E1 is the effective deformation potential.
Going back to Eq. (10), it is possible to obtain the per-

unit-time transition probability, and, along with Eq. (10)
of the main text, the RT for a given electronic band n
can be written as

1
τk

=
2π

MN
E2

1
h̄v2

0
kBT ∑

k′

(
1− k · k′

kk′

)
δ (εk′ − εk) , (14)

where M is the atomic mass and v0 is the sound velocity.
In Eq. (14), it was considered that the scattering is elas-
tic, and hence, the phonon energy has been neglected.
Such approximation, is valid for T >> 1K [4], which
meets the conditions usually found in TE applications.
Finally, considering that the electronic dispersion is arbi-
trary but spherically symmetric, the summation over k′

can be turned into an integral that can be solved by us-
ing spherical coordinates and properties of δ-functions.
Hence, one finds the following expression for the RT
for non-polar scattering of charge carriers by acoustic
phonons in a single band n

τac(k) =
πh̄ρ

E1
2

v0
2

kBT
1
k2

∣∣∣∣∂εk
∂k

∣∣∣∣ , (15)

where, ρ = MN/V is the mass density of the material
and V is the crystal volume.

Carrier-Optical Phonons Non-polar Scattering

In more complex crystal lattices with two or more
atoms in the unit cell, alongside with the scattering by
acoustic phonons, the polar and non-polar scattering by
optical phonons are at play. The idea of deformation
potentials has been extended to the interaction between
charge carriers and long-wavelength (q→ 0) non-polar
optical phonons, giving rise to the optical deformation
potentials (ODP), corresponding to shifts of the elec-

tronic bands due to relative displacement between two
sublattices of the crystal. Unlike the scattering by acous-
tic lattice oscillations, optical phonons oscillate out of
phase, and the center of mass remains at rest. In the
case of the scattering by non-polar optical phonons, the
interaction energy related to the induced variation of
the energy band gap should be proportional to the shift
of any atom in the unit cell [4]

H′npol =
3s

∑
λ=4

Aλus
λ , (16)

where Aλ is a constant vector related to the symme-
try of the arrangement of the band edges, us

λ is the
atomic displacement (similar to Eq. (12)) associated with
mode λ, and s is the number of atoms in the unit cell.
Consequently, the energy operator in this case appears
to be much more involving than the case of acoustic
phonons. In order to proceed, an effective vector can
be taken to represent all interactions in an average man-
ner, and hence, all the complexity can be encompassed
within such effective vector. Considering a specific opti-
cal phonon branch, λ, in which the scattering is occur-
ring on its minimum, A can be defined as

A = E0bg , (17)

where E0 is the effective ODP, bg = (π/a)g is the recip-
rocal lattice vector with g being a unit vector directed
from the BZ center to the minimum, while a is the lattice
constant.

Within the previous considerations, the per-unit-time
transition probability for charge carriers, for a specific
band n, can be obtained as

Wnpol(k|k′) =
πE2

0
NMω0

(π

a

)2
[N0δ(εk′ − εk − h̄ωq)

+ (N0 + 1)δ(εk′ − εk + h̄ωq)] , (18)

with ω0 = ω(q→0) and N0 is the Bose-Einstein distri-
bution. Additionally, we considered only coupling par-
allel to the unit polarization vector (eλ(q)). The non-
polar scattering of charge carriers by optical phonons
is essentially non-elastic, due to the magnitude of
optical phonon energy. However, the description of
this scattering within the RT approximation may arise
from the evenness of the transition probability function,
W(k|k′) = W(|k− k′|), which is a condition satisfied
by the scattering probability as given by Eq. (18). On
the basis of such considerations, at high temperatures,
kBT >> h̄ω0, the following simple expression is ob-
tained for the RT for the non-polar scattering by optical
phonons at a specified band n [4]

τnpol(k) =
1

πh̄
β2 ρa2

kBT
1
k2

∣∣∣∣∂εk
∂k

∣∣∣∣ , (19)
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in which β = h̄ω0/E0 is the reciprocal ODP normal-
ized by the energy of optical phonons. In particular,
τnpol(k) presents the same temperature dependence as
the scattering by acoustic phonons.

Carrier-Optical Phonons Polar Scattering

In semiconductor compounds with some degree of
ionic bonding, there is an additional interaction with
charge carriers known as polar mode scattering, in
which the charge carriers are scattered by the electric po-
larization caused by longitudinal optical (LO) phonons.
This was firstly discussed by Fröhlich [7] and Callen [8],
while Howarth and Sondheimer [9] developed the the-
ory of polar mode scattering, on the basis of electrons as
charge carriers on a simple parabolic conduction band.
Following the derivation by Fröhlich [10], the electric
polarization due to ion displacement is given by

P(r) =
(

h̄ωLO(q)
8πVζ?

)1/2

∑
q

3s

∑
λ=4

eλ·

[bλ(q) exp{(iq · r)}+ b∗λ(q) exp{(−iq · r)}] , (20)

where ωLO(q) is the frequency of the LO phonons;
1/ζ? = 1/ζ∞ − 1/ζ0, with ζ∞ and ζ0 being the high-
frequency and the static dielectric constants, respectively.
From the Poisson’s equation we can derive the scalar
potential of the polarization vector, ∇2φ = 4π∇ · P(r),
which yields the following interaction energy of the po-
lar mode scattering of charge carriers by optical phonons

H′pol = ±eφ = ∓ie
(

4πh̄ωLO(q)
2Vζ∗

)1/2

∑
q

3s

∑
λ=4

1
q2 (eλ ·q)

[bλ(q) exp{(iq · r)}+ b∗λ(q) exp{(−iq · r)}] , (21)

with eλ · q = q in the case of LO phonons.
If the phonon dispersion is not considered, ωLO(q) =

ωLO
0 , then the following expression for the transition

probability, at a specific band n, is obtained

Wpol(k|k′) =
4π2e2

Vζ?
ωLO

0
(k′ − k)2×[

N0δ(εk′ − εk + h̄ωLO
0 ) + (N0 + 1)δ(εk′ − εk + h̄ωLO

0 )
]

.

(22)

Unlike non-polar mode scattering, from Eq. (22) it can
be seen that Wpol(k|k′) is dependent on the directions
k and k′ and, generally, it is impossible to introduce RT
for polar mode scattering of optical phonons. However,
at high temperatures, kBT >> h̄ωLO

0 , the non-elasticity
can be neglected with εk′ ∼ εk and N0 + 1 ∼ N0 ∼

kBT/h̄ωLO
0 , which yields

Wpol(k|k′) =
8π2e2

Vζ?
kBT

h̄
1

(k′ − k)2 δ(εk′ − εk) . (23)

Thus, substituting Eq. 23 into Eq. (10) of the main text
and transforming the summation over k′ into an inte-
gral that can be solved by using spherical coordinates
and properties of δ-functions, it results in the following
closed expression for the RT of polar mode scattering of
optical phonons, given a specific band n,

τpol(k) =
ζ? h̄

2e2kBT

∣∣∣∣∂εk
∂k

∣∣∣∣ , (24)

which does not depend on the phonon-frequency in the
high temperature limit.

The generalization to include screening effects was
subsequently developed by Ehrenreich [11]. Free carriers
that are present in the sample screen out the electric field
produced by optical vibrations, resulting twofold effects
in the quasi-static approximation, namely, a change in
the matrix element of charge carrier interaction with
optical phonons and a shift in the frequency of longi-
tudinal optical mode [11]. The former effect decreases
the transition probability by a factor of 1− (r∞q)−2, in
which r∞ is the screening radius given by

r∞
−2(k) =

4πe2

ζ∞

∫
−∂ f (0)(ε)

∂εk
g(ε)dε , (25)

where f (0)(ε) is the equilibrium electron distribution
function and g(ε) is the density of states (DOS), which
is given explicitly in Eq. (29) of the main text. The latter
effect leads to a frequency shift of the LO vibrations
given by

(ωLO)2 = (ωTO)2
(

ζ0/ζ∞ + (r∞q)−2

1 + (r∞q)−2

)
, (26)

where ωTO is the transverse optical (TO) mode frequency.
Therefore, the frequency of the LO phonon is strongly
reduced, which also affects the transition probability [12].
The dynamical features of the screening were neglected
here, since their effect is regarded to be quite small [12].
Hence, the consideration of quasi-static screening results
in the following factor in the denominator of expression
for the RT

Fpol =

[
1− 1

2(r∞k)2 ln[1 + 4(r∞k)2] +
1

1 + 4(r∞k)2

]−1
.

(27)
It is important to note that the energy dependence of RT
is also changed because of the energy dependence of the
screening through r∞ [12].

The necessary modifications when dealing with polar
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mode scattering of p-like symmetry holes have also been
addressed [13–16], beyond the polar mode scattering
of s-like electrons. The work by Wiley [16] gave the
first quantitative discussion of overlap effects on the
polar mobility of holes, showing that, for carriers with
p-like valence bands, the mobility is about twice the
mobility for carriers with pure s-like wave functions.
Conclusions, in the same line of reasoning, that the
mobility increases due to the p-like symmetry of wave
functions, were obtained by Kranzer [13] on the basis
of a numerical solution of the BTE and by Costato et
al. [14] by using a Monte Carlo technique for solving the
coupled BTE. Consequently, besides screening effects, it
is also necessary to include the correction factor, Kpol ,
in the RT given by Eq. (24), due to the p-like symmetry
of the wave functions, which is important, for example,
in the case of polar mode scattering of holes. The way
the correction factor Kpol is determined in the actual
calculations will be discussed later in the article.

Carrier-Impurity Scattering

The consideration of extrinsic collision processes, be-
yond those involving the crystalline lattice, i.e., the in-
trinsic scattering by phonons, requires the presence of
impurities in the crystal. Particularly, we will consider
only the concentration of ionized impurities because the
number of charged donors or acceptors is usually con-
siderably larger than that of neutral imperfections. Ion-
ized impurity scattering has been treated theoretically
by Brooks and Herring (B-H) [17, 18], by considering a
screened Coulomb potential, the Born approximation
for the evaluation of transition probabilities, and ne-
glecting the perturbation effects of the impurities on the
electron energy levels and wave functions. In the B-H
theory, the electron is scattered independently by dilute
concentrations of ionized centers randomly distributed
in semiconductors. It constitutes a good description
without considering more complex effects, such as the
contributions from coherent scattering from pairs of
impurity centers, which requires a quantum transport
theory [19].

The per-unit-time transition probability for the scat-
tering of charge carriers by ionized impurities can be
written in the plane-wave approximation as

W(k|k′) = 2π

h̄
Ni
V∣∣∣∣∫ U(r) exp
[
i(k− k′) · r

]
dr
∣∣∣∣2 δ(εk′ − εk) , (28)

where U(r) is the scattering potential and Ni is the ion-
ized impurity concentration.

The long-range Coulomb field, U(r) = eφ(r) =
±e2/ζ0r, where the potential φ at a point r of the crystal

is due to the presence of positive (donor) or negative
(acceptor) impurity ions. The straightforward appli-
cation of this field in Eq. (28) leads to a logarithmic
divergence, and hence, a screened Coulomb potential
has to be considered. According to the B-H theory, the
potential can be expressed in a more rigorous form as
φ(r) = ±e/ζ0r (exp (−r/r0)), where r0 is the radius of
ion field screening defined by Eq. (31). From Eqs. (10) of
the main text, (10), and (28), the RT for the scattering of
charge carriers by ionized impurities can be expressed
for each band n as

τimp(k) =
h̄ζ0

2

2πe4NiFimp(k)
k2
∣∣∣∣∂εk

∂k

∣∣∣∣ (29)

where

Fimp(k) = ln(1 + η)− η

1 + η
, (30)

is the screening function, with η = (2kr0)
2, being

r0
−2(k) =

4πe2

ζ0

∫
−∂ f (0)(ε)

∂εk
g(ε)dε . (31)

Anisotropy of Average hole velocity in SnSe
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Figure 1. Average hole group velocity in function of hole
energies in SnSe. The results are given along each crystalline
axis α (a, b, and c axes) on the basis of the equation vα(ε) =√

∑n,k |vα
n,k|2δ(ε− εn,k)/ ∑n,k δ(ε− εn,k)
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