Electronic Supplementary Information (ESI)

Proton conduction in hydronium solvate ionic liquids affected by ligand shape

Kio KAWATA,^a Atsushi KITADA,^{a,*} Naoki TSUCHIDA,^a Masayuki SAIMURA,^b Takashi NAGATA,^b Masato KATAHIRA,^b Kazuhiro FUKAMI,^a and Kuniaki MURASE^a

^aDepartment of Materials Science and Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

^bInstitute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

*Corresponding author: kitada.atsushi.3r@kyoto-u.ac.jp

Temperature (°C)	Conductivity (mS cm ⁻¹)	Viscosity (mPa s)
50	0.15	677
55	0.23	440
60	0.32	300
65	0.44	212
70	0.58	155
75	0.75	117
80	0.95	90.0
85	1.2	70.8
90	1.4	56.7

Table S1. Ionic conductivities and viscosities of $[H_3O^+{\cdot}Dh18C6]Tf_2N$ at various

temperatures.

Temperature (°C)	Conductivity (mS cm ⁻¹)	Viscosity (mPa s)
60	0.37	263
65	0.50	190
70	0.65	140
75	0.85	107
80	1.1	83.1
85	1.3	65.7

Table S2. Ionic conductivities and viscosities of $[H_3O^+{\cdot}B18C6]Tf_2N$ at various

temperatures.

Temperature (°C)	Conductivity (mS cm ⁻¹)	Viscosity (mPa s)
5	0.83	143
15	1.4	81.0
25	2.2	50.2
35	3.3	33.5
45	4.6	23.4

Table S3. Ionic conductivities and viscosities of $[H_3O^+ \cdot G5]Tf_2N$ at various temperatures.

Fig. S1 Graphical representation of the equilibrium geometry of the most stable conformers of Dh18C6 complexes with H_3O^+ (B3LYP/6-311+G** level): oxygens in red, carbons in gray, and hydrogens in white.

Fig. S2 Graphical representation of the equilibrium geometry of the most stable conformers of B18C6 complexes with H_3O^+ (B3LYP/6-311+G** level): oxygens in red, carbons in gray, and hydrogens in white.