Supporting Information

Tuning the Miscibility of Water in Imide-Based Ionic Liquids

Andreia S. L. Gouveia,^[a] Carlos E. S. Bernardes,^{*[b]} Alexander S. Shaplov,^[c] Elena I. Lozinskaya,^[d] José N. Canongia Lopes,^[a] and Isabel M. Marrucho^{*[a]}

^a Centro de Química Estrutural, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.

^b Centro de Química Estrutural, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande 1749-016 Lisboa, Portugal

^c Luxembourg Institute of Science and Technology (LIST), 5 avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg

^d A.N. Nesmeyanov Institute of Organoelement Compounds Russian Academy of Sciences (INEOS RAS), Vavilov str. 28, 119991, Moscow, Russia

* Corresponding authors:

E-mails: cebernardes@ciencias.ulisboa.pt; isabel.marrucho@tecnico.ulisboa.pt

1. Materials Characterization

NMR spectra were recorded on AMX-400 or AMX-300 spectrometers (Bruker) at 298 K in the indicated deuterated solvents and are listed in ppm. The signal corresponding to the residual protons or carbons of the deuterated solvent was used as an internal standard for ¹H and ¹³C NMR, respectively. C_6F_6 was utilized as external standard for ¹⁹F NMR. IR spectra were acquired on a Nicolet Magna-750 Fourier IR-spectrometer using KBr pellets and Spectragryph optical spectroscopy software.¹ The obtained NMR and IR spectra obtained for [C₂mim][TFSAM] and [C₂mim][TSAC] are given in Figures S1 to S6. The nomenclature of the ILs used in this work and the amount of water in the ILs after purification is provided in Table S1.

1-Ethyl-3-methyl imidazolium 2,2,2-trifluoromethylsulfonyl-N-cyanoamide ([C₂mim][TFSAM])

 $[C_2 mim][TFSAM]$ was prepared by ion exchange reaction between $[C_2 mim][Br]$ and KTFSAM in an aqueous medium in accordance with the procedure published by our group previously.^{2,3}

Yield: 85%; Anal. Calcd. for C₈H₁₁N₄F₃SO₂ (284.26), %: N, 19.71%; C, 33.80%; H, 3.90%; Found, %: N, 19.59%; C, 33.75%; H, 4.09%; ¹H NMR (300.2 MHz, DMSO-d₆): 9.08 (s, 1H, H2 (Im)), 7.72 (s, 1H, H4 (Im)), 7.64 (s, 1H, H5 (Im)), 4.18 (m, 2H, CH₂CH₃), 3.84 (s, 3H, CH₃), 1.41 (t, 3H, CH₂CH₃, J_{HH} = 7.5 Hz); ¹³C NMR (100.6 MHz, DMSO-d₆): 136.2, 125.1-115.5 (q, ¹J_{CF} = 325 Hz), 123.5, 121.9, 114.5 (CN), 44.2, 35.6, 14.9; ¹⁹F NMR (282.4 MHz, DMSO-d₆): -77.8 (s, CF₃); IR (KBr pellet): 3158 (m, v_{C-H}), 3117 (m, v_{C-H}), 2991 (w), 2192 (vs, v_{C=N}), 1574 (s, v_{-C-N}), 1468 (w), 1430 (w), 1391 (w), 1334 (vs, v_{asSO2}), 1236 (vs), 1217 (vs, v_{CF}), 1171 (vs, v_{sSO2}), 1120 (s, v_{CF}), 1031 (w), 960 (w), 832 (s), 752 (m), 702 (w), 640 (s), 596 (s), 545 (w), 479 (m), 449 (w), 406 (w) cm⁻¹.

1-Ethyl-3-methyl imidazolium 2,2,2-trifluoro-N-(trifluoromethylsulfonyl)acetamide ([C₂mim][TSAC])

[C₂mim][TSAC] was synthesized from [C₂mim][Br] and KTSAC by using the procedure suggested by H. Matsumoto.³⁻⁵

Yield: 82%; Anal. calcd. for C₉H₁₁N₃F₆SO₃ (355.3), %: C 30.43; H 3.12; F 32.09; found, %: C 30.15; H 3.07; F 32.49; ¹H NMR (400.2 MHz, DMSO-d₆): 9.09 (s, 1H, H2 (Im)), 7.75 (s, 1H, H4 (Im)), 7.66 (s, 1H, H5 (Im)), 4.19 (m, 2H, <u>CH</u>₂CH₃), 3.84 (s, 3H, CH₃), 1.41 (t, 3H, CH₂<u>CH</u>₃, J_{HH} = 7.6 Hz); ¹³C NMR (100.6 MHz, D₂O): 161.1-160.0 (q, ¹J_{CF} = 36.4 Hz, CF₃<u>CO</u>), 136.7, 123.9, 122.4, 124.9-115.3 (q, ¹J_{CF} = 323 Hz, <u>C</u>F₃SO₂), 121.2-112.6 (q, ¹J_{CF} = 290 Hz, <u>C</u>F₃CO), 44.6, 36.0, 15.4; ¹⁹F NMR (376.5 MHz, D₂O): -74.9 (C<u>F</u>₃CO), -78.6 (C<u>F</u>₃SO₂); IR (KBr pellet): 3157 (s, v_{C-H}), 3120 (s, v_{C-H}), 2993 (w), 1675 (vs, v_{C=O}), 1574 (s, v_{-C-N}), 1471 (m), 1432 (w), 1384 (s), 1322 (vs, v_{asSO2}), 1239 (s, v_{CF}), 1189 (vs, v_{sSO2}), 1144 (vs), 1124 (vs, v_{CF}), 1032 (w), 959 (w), 918 (m), 827 (s), 778 (m), 754 (w), 734 (m), 702 (w), 649 (m), 620 (s), 592 (s), 561 (m), 511 (m), 453 (w) cm⁻¹.

Table S1 Chemical structure and respective nomenclature of the ILs used in this work;wt % represents the amount of water in the ILs after purification.

Ionic Liquid	Nomenclature	Chemical Structure	wt % H ₂ O
1-ethyl-3-methylimidazolium bis(fluorosulfonyl)imide	[C ₂ mim][FSI]	N+ N O N O F	0.08
1-ethyl-3-methylimidazolium 2,2,2-trifluoro-N- (trifluoromethylsulfonyl)acetamide	[C ₂ mim][TSAC]	F_3C S N C CF_3 O CF_3 O	0.04
1-ethyl-3-methylimidazolium 2,2,2-(trifluoromethyl)sulfonyl-N- cyanoamide	[C ₂ mim][TFSAM]	$R_{3}C$ R	1.70

Figure S1. ¹H and ¹³C NMR of [C₂mim][TFSAM].

Figure S2. ¹⁹F NMR of [C₂mim][TFSAM].

Figure S4. ¹H and ¹³C NMR of [C₂mim][TSAC].

Figure S5. ¹⁹F NMR of [C₂mim][TSAC].

Figure S6. FT-IR spectrum of [C₂mim][TSAC].

2. Solubility Data

Figure S7. Temperature-composition phase diagram for water and ILs as a function of ILs mole fraction, highlighting the high dilution region of Figure 2 of the main text: (\blacksquare) [C2mim][NTf2]²³, (\bullet) [C2mim][FSI], (\blacktriangle) [C2mim][TSAC], and (\bullet) [C2mim][TFSAM]. The lines are just guide to the eye.

$T \pm 2\sigma$ (K) (n=2)	$x_{[C2mim][TFSAM]}$	W[C2mim][TFSAM]
300.55 ± 0.02	0.1092	0.6593
300.97 ± 0.03	0.1055	0.6507
301.46 ± 0.02	0.1019	0.6417
302.01 ± 0.01	0.0990	0.6344
302.47 ± 0.03	0.0960	0.6264
302.94 ± 0.02	0.0928	0.6178
303.27 ± 0.02	0.0892	0.6072
303.66 ± 0.03	0.0873	0.6016
304.05 ± 0.01	0.0852	0.5954
304.23 ± 0.03	0.0828	0.5877
304.41 ± 0.02	0.0805	0.5804
304.54 ± 0.02	0.0775	0.5704
304.87 ± 0.04	0.0748	0.5609
305.10 ± 0.03	0.0722	0.5515
305.23 ± 0.03	0.0698	0.5425
305.59 ± 0.03	0.0675	0.5335
305.54 ± 0.02	0.0655	0.5252
305.67 ± 0.02	0.0627	0.5136
305.91 ± 0.02	0.0595	0.4997
305.93 ± 0.01	0.0564	0.4857
305.93 ± 0.01	0.0518	0.4632
305.93 ± 0.02	0.0489	0.4482
305.93 ± 0.01	0.0472	0.4388
305.93 ± 0.02	0.0453	0.4282
305.93 ± 0.02	0.0439	0.4204
305.93 ± 0.03	0.0416	0.4068
305.93 ± 0.03	0.0387	0.3888
305.93 ± 0.02	0.0369	0.3771
305.88 ± 0.02	0.0350	0.3639
305.70 ± 0.02	0.0314	0.3389
305.62 ± 0.03	0.0303	0.3306
305.52 ± 0.03	0.0287	0.3185
305.29 ± 0.02	0.0270	0.3046
304.90 ± 0.01	0.0255	0.2928
304.64 ± 0.01	0.0252	0.2897
304.46 ± 0.02	0.0241	0.2808
304.15 ± 0.02	0.0230	0.2710
303.68 ± 0.02	0.0219	0.2612
303.30 ± 0.03	0.0210	0.2526
302.96 ± 0.02	0.0199	0.2431
302.55 ± 0.02	0.0191	0.2349
301.67 ± 0.02	0.0182	0.2263
300.90 ± 0.01	0.0172	0.2169
300.51 ± 0.02	0.0166	0.2102

Table S2. Experimental mole and mass fraction solubilities of $[C_2mim][TFSAM]$ in water as a function of temperature.^{*a*}

^{*a*} σ (*T*) is the standard error of the mean; standard uncertainty *u* is $u_r(x) = 0.0001$; *n* is the number of replicates.

Table S3. Experimental mole and mass fraction solubilities of $[C_2mim][FSI]$ in water as a function of temperature.^{*a*}

$T \pm 2\sigma$ (K) (n=2)	$x_{[C2mim][FSI]}$	W[C2mim][FSI]
295.65 ± 0.03	0.0007	0.0117
294.80 ± 0.04	0.0010	0.0159
295.14 ± 0.03	0.0012	0.0190
295.75 ± 0.05	0.0014	0.0219
296.15 ± 0.03	0.0016	0.0248
296.26 ± 0.03	0.0018	0.0280
296.34 ± 0.02	0.0020	0.0312
297.24 ± 0.03	0.0022	0.0341
300.48 ± 0.05	0.0024	0.0370
305.67 ± 0.05	0.0025	0.0388
308.28 ± 0.02	0.0026	0.0400
309.32 ± 0.02	0.0027	0.0414
310.62 ± 0.02	0.0028	0.0428
311.65 ± 0.04	0.0028	0.0440
312.95 ± 0.03	0.0029	0.0454
315.80 ± 0.04	0.0030	0.0467
318.66 ± 0.03	0.0031	0.0480

^{*a*} σ (*T*) is the standard error of the mean; standard uncertainty *u* is $u_r(x) = 0.0001$; *n* is the number of replicates.

Table S4. Experimental mole and mass fraction solubilities of water in $[C_2mim][FSI]$ IL as a function of temperature.^{*a*}

$T \pm 2\sigma$ (K) (n=2)	$x_{[C2mim][FSI]}$	W[C2mim][FSI]
294.35 ± 0.05	0.9705	0.9981
295.04 ± 0.03	0.9373	0.9959
296.43 ± 0.04	0.9041	0.9935
297.21 ± 0.04	0.8755	0.9913
297.72 ± 0.03	0.8500	0.9892
298.03 ± 0.03	0.8078	0.9855
298.44 ± 0.02	0.7378	0.9785
298.69 ± 0.04	0.7191	0.9764
299.22 ± 0.03	0.7006	0.9743
300.75 ± 0.02	0.6807	0.9718
303.08 ± 0.05	0.6650	0.9698
304.36 ± 0.07	0.6495	0.9677
307.19 ± 0.03	0.6351	0.9657
312.42 ± 0.06	0.6217	0.9638
315.14 ± 0.01	0.5915	0.9591
317.64 ± 0.01	0.5796	0.9571

^{*a*} σ (*T*) is the standard error of the mean; standard uncertainty *u* is $u_r(x) = 0.0001$; *n* is the number of replicates.

Table S5. Experimental mole and mass fraction solubilities of water in $[C_2mim][TSAC]$ IL as a function of temperature.^{*a*}

$T \pm 2\sigma$ (K) (n=2)	$x_{[C2mim][TSAC]}$	W[C2mim][TSAC]
295.04 ± 0.03	0.9577	0.9978
296.57 ± 0.07	0.9187	0.9955
298.16 ± 0.02	0.8844	0.9934
299.66 ± 0.02	0.8526	0.9913
300.74 ± 0.04	0.8061	0.9880
301.35 ± 0.03	0.7786	0.9858
301.53 ± 0.02	0.7527	0.9836
301.55 ± 0.02	0.7269	0.9813
301.46 ± 0.01	0.6956	0.9783
301.46 ± 0.01	0.6694	0.9756
301.48 ± 0.02	0.6527	0.9737
301.52 ± 0.01	0.6337	0.9715
301.52 ± 0.01	0.6166	0.9695
301.52 ± 0.01	0.5999	0.9673
301.48 ± 0.03	0.5702	0.9632
304.65 ± 0.02	0.5281	0.9567
306.73 ± 0.01	0.5083	0.9533
307.75 ± 0.04	0.4980	0.9514
311.13 ± 0.03	0.4816	0.9483
315.80 ± 0.04	0.4545	0.9427

^{*a*} σ (*T*) is the standard error of the mean; standard uncertainty *u* is $u_r(x) = 0.0001$; *n* is the number of replicates.

3. Dynamic Light Scattering Experiments

The Dynamic Light Scattering (DLS) experiments were performed at 298.15 K on a Zetasizer Nano ZS from Malvern, model ZEN3600. This apparatus was equipped with a 4 mW He–Ne solid-state laser operating at 633 nm. The backscattered light was detected at 173° and the data processed using the Zetasizer software. For the acquisition of the autocorrelation curve, the difference between refractive index of water (found in the software database) and ILs⁶ was considered. In general, the results quality was not found to be good and z-average between 6200 and 9000 nm. The three ILs present low viscosities at 298.15 K ([C₂mim][FSI] (η = 19.3 mPa s), [C₂mim][TSAC] (η = 25.3 mPa s), and [C₂mim][TFSAM] (η = 20.2 mPa s)), as previously reported by us.⁷

4. Molecular Dynamics Simulations Details

Ionic Liquid	Number of Ion Pairs	Number of Water Molecules	$x_{ m IL}$	Box Side / Å
[C ₂ mim][NTf ₂]	300	33	0.9	5.073
	300	100	0.75	5.092
[C ₂ mim][FSI]	300	33	0.9	4.669
	300	100	0.75	4.689
[C mim][TSAC]	200	22	0.0	4.042
	300	100	0.9	4.942
	300	200	0.6	5.012
[C.mim][TESAM]	300	33	0.9	1 712
	300	100	0.75	4.771
	300	200	0.6	4.812
	300	2700	0.1	5.712

Table S6. Simulation boxes details used in the Molecular Dynamics runs.

5. References

(1) F. Menges, Spectragryph - Optical Spectroscopy Software, Version 1.2.9, <u>Http://Www.Effemm2.de/Spectragryph/, 2019.</u>

(2) A. S. Shaplov, E. I. Lozinskaya, P. S. Vlasov, S. M. Morozova, D. Y. Antonov, P. H. Aubert, M. Armand and Y. S. Vygodskii, *Electrochim. Acta*, **2015**, *175*, 254-260.

(3) A. S. L. Gouveia, L. C. Tome, E. I. Lozinskaya, A. S. Shaplov, Y. S. Vygodskii and I. M. Marrucho, *Phys. Chem. Chem. Phys.*, **2017**, *19*, 28876-28884.

(4) H. Matsumoto, N. Terasawa, T. Umecky, S. Tsuzuki, H. Sakaebe, K. Asaka and K. Tatsumi, *Chemistry Letters*, **2008**, *37*, 1020-1021.

(5) H. Matsumoto, H. Kageyama and Y. Miyazaki, Chem. Commun., 2002, 1726-1727.

(6) X. Wang, Q. Zhou, Refractive Index of Ionic Liquids, in: S. Zhang (Ed.) Encyclopedia of Ionic Liquids, Springer Singapore, Singapore, 2020, pp. 1-8.

(7) A. S. L. Gouveia, C. E. S. Bernardes, L. C. Tome, E. I. Lozinskaya, Y. S. Vygodskii,
A. S. Shaplov, J. N. C. Lopes, I. M. Marrucho, *Phys. Chem. Chem. Phys.*, 2017, 19, 29617-29624.