Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Electric Field Controlled Uphill Electron Migration along α-Helical Oligopeptides

Xiufang Song, Yuxiang Bu^{*}

School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, P. R.

China

* The corresponding author: Prof. Dr. Yuxiang Bu, byx@sdu.edu.cn

Contents

- 1. Comparisons of Calculated Results Using Different Methods on Anionic Structures
- 2. Electric Field Effects on the Structure of α-Helical Oligopeptides
- **3.** LUMO Distributions of Different α-Helical Oligopeptides
- 4. Spin Density Distributions of Different α-Helical Oligopeptides
- 5. Spin Densities of Each Residue Unit in Different α-Helical Oligopeptides in Different Strength Electric Fields
- 6. SOMO Distributions of Different α-Helical Oligopeptides
- 7. Comparisons of the Peptides in This Work and Ideal α-Helix
- 8. Behaviors of Free Amino and Carboxyl Groups at Terminus of α-Helical Oligopeptides (NH2-(CO-CH2-NH)_n-COOH) in the Applied Electric Field

1. Comparisons of Calculated Results Using Different Methods on Anionic Structures

				Dipole	LUMO			
α-helical	Eapp	Methods	Energy (a.u.)	moment	energy			
				(Debye)	(a.u.)			
	20	RB3LYP	-1288.719621	22.437	-0.02903			
		UB3LYP	-1288.719621	22.437	-0.02903			
n=5	40	RB3LYP	-1288.728533	23.0824	-0.02301			
	40	UB3LYP	-1288.728533	23.0824	-0.02301			
	20	RB3LYP	-2120.857821	39.042	-0.03523			
- 0		UB3LYP	-2120.857821	39.042 -0.03523				
n=9	40	RB3LYP	-2120.873282	40.1215	-0.03839			
	40	UB3LYP	-2120.873282	40.1215	-0.03839			
	20	RB3LYP	-3369.061793	69.1844	-0.02852			
15	30	UB3LYP	-3369.061793	69.1844	-0.02852			
n=15		RB3LYP	-3369.089365	71.0192	-0.03749			
	40	UB3LYP	-3369.089365	71.0192	-0.03749			

Table SI. Calculated energies, dipole moments and LUMO energies of the neutral α -helical oligopeptides with different chain lengths using the RB3LYP and UB3LYP

				Dipole	SOMO			
α-helical	$\mathbf{E}_{\mathbf{app}}$	Methods	Energy (a.u.)	moment	energy			
			Dipole SOMe Energy (a.u.) moment energy (Debye) (a.u.) -1288.717428 23.3681 0.0289 -1288.717863 23.4632 0.0289 -1288.717863 23.4632 0.0292 -1288.729666 37.5028 0.0292 -1288.729676 37.4994 0.0276 -2120.864835 48.1231 0.0204 -2120.86485 48.112 0.0174 -2120.88811 71.8388 0.0229 -2120.888123 71.8572 0.0155	(a.u.)				
	20	RB3LYP	-1288.717428	23.3681	0.02894			
n=5 -	30	UB3LYP	-1288.717863	23.4632	0.02899			
	40	RB3LYP	-1288.729666	56 37.5028 0.02924				
	40	UB3LYP	-1288.729676	37.4994	0.02769			
	Eapp 30 - 40 - 30 - 40 -	RB3LYP	-2120.864835	48.1231	0.02045			
n=9 -	30	UB3LYP	B3LYP -2120.86485 48.112					
	40	RB3LYP	-2120.88811	71.8388	0.02294			
	40	UB3LYP	-2120.888123	71.8572	0.01557			

Table SII. Calculated energies, dipole moments and SOMO energies of the anionic α -helical oligopeptides with different chain lengths using the RB3LYP and UB3LYP

Figure S1. Electron spin density and SOMO distributions of the anionic α -helical oligopeptide 5 (residue unit number is 5) in two E_{app} using the RB3LYP and UB3LYP functionals.

Figure S2. LUMO distributions of the neutral α -helical oligopeptide 5 (residue unit number is 5) in two E_{app} using the RB3LYP and UB3LYP functionals.

Figure S3. Electron spin density and SOMO distributions of the anionic α -helical oligopeptide 9 (residue unit number is 9) in two E_{app} using the RB3LYP and UB3LYP functionals.

Figure S4. LUMO distributions of the neutral α -helical oligopeptide 9 (residue unit number is 9) in two E_{app} using the RB3LYP and UB3LYP functionals.

Note: From Tables S I and S II, Figures S1-S4, we find the RB3LYP and UB3LYP results are similar. In this work, we use RB3LYP and UB3LYP to calculate the neutral and anionic structures, respectively.

Figure S5. Overlap of the neutral α -helical oligopeptides in the absence of E_{app} and in E_{app} = 60 x 10-4 a.u. Blue and red represent the structure was optimized in the absence of E_{app} and in the presence of E_{app} , respectively. The numbers in the square brackets denote the distance between N-terminal and C-terminal. RMSD (root mean square deviation) reflects the deviations between the two structures.

Figure S6. LUMO distributions of α -helical oligopeptides with different chain lengths (the number of residue units, n) along with E_{app} .

4. Spin Density Distributions of Different α-Helical Oligopeptides

Figure S7. Spin density distributions of α -helical peptides with different chain lengths (the number of residue units, n) along with E_{app} .

5. Spin Densities of Each Residue in Different a-Helical Oligopeptides in Different **Strength Electric Fields**

Table S III. Spin density variations of each residue in peptide 5 with residue number n=5 in different strength Eapp

Residue	Electric field strength (10 ⁻⁴ a.u.)												
order	0	5	10	15	20	25	30	35	40	45	50	55	60
1	0.67	0.60	0.53	0.45	0.36	0.27	0.19	0.13	0.09	0.05	0.03	0.01	0.00
2	0.37	0.44	0.51	0.58	0.54	0.49	0.45	0.40	0.34	0.26	0.16	0.06	0.03
3	-0.03	-0.03	-0.03	-0.02	-0.01	-0.01	-0.02	-0.02	-0.02	-0.02	-0.02	-0.01	-0.01
4	0.00	0.00	-0.01	-0.01	-0.03	-0.03	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04	-0.04
5	0.00	0.00	0.00	-0.01	0.14	0.29	0.41	0.53	0.64	0.75	0.87	0.99	1.02

Table S IV. Spin density variations of each residue in peptide 9 with residue number n=9 in different strength Eapp

Residue		Electric field strength (10 ⁻⁴ a.u.)											
order	0	5	10	15	20	25	30	35	40	45	50	55	60
1	1.41	1.41	1.41	1.34	1.02	0.79	0.10	0.07	0.07	0.06	0.00	0.00	0.00
2	-0.27	-0.30	-0.34	-0.35	-0.26	-0.20	0.37	0.26	0.13	0.01	0.00	0.00	0.00
3	0.01	0.00	0.01	0.06	0.02	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00
4	-0.01	-0.01	-0.02	-0.06	-0.03	-0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.00	0.00	0.00	0.01	0.01	0.03	0.03	0.03	0.01	0.01	0.00	0.00
6	0.00	0.00	0.00	0.00	0.02	0.02	-0.01	0.00	0.02	0.03	0.03	0.02	0.02
7	0.00	0.00	0.00	0.02	0.02	0.02	0.01	0.01	0.00	0.00	-0.01	-0.02	-0.02
8	0.00	0.00	0.00	-0.01	0.14	0.24	-0.02	-0.02	-0.03	-0.04	-0.04	-0.04	-0.04
9	-0.14	-0.10	-0.06	-0.01	0.07	0.13	0.50	0.64	0.78	0.93	1.01	1.03	1.04

Residue	Electric field strength (10 ⁻⁴ a.u.)												
order	0	5	10	15	20	25	30	35	40	45	50	55	60
1	0.53	0.44	0.36	0.27	0.18	0.10	0.01	0.00	0.00	0.00	0.00	0.00	0.00
2	0.49	0.47	0.44	0.34	0.20	0.06	0.01	0.00	0.00	0.00	0.00	0.00	0.00
3	-0.01	0.01	0.02	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
4	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00
5	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.01	0.00	0.00	0.00	0.00	0.00
6	0.00	0.04	0.07	0.07	0.07	0.07	0.06	0.03	0.00	0.00	0.00	0.00	0.00
7	0.00	0.02	0.04	0.05	0.05	0.05	0.05	0.02	0.00	0.00	0.00	0.00	0.00
8	0.00	0.01	0.05	0.04	0.03	0.04	0.03	0.02	0.00	0.00	0.00	0.00	0.00
9	0.00	0.00	0.00	0.02	0.02	0.03	0.03	0.02	0.01	0.00	0.00	0.00	0.00
10	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.00	0.00
12	0.00	0.00	0.00	0.01	0.01	0.02	0.03	0.05	0.05	0.04	0.03	0.02	0.02
13	0.00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.01	0.00	-0.01	-0.02	-0.02
14	0.00	0.00	0.00	0.00	-0.01	-0.02	-0.03	-0.05	-0.07	-0.07	-0.07	-0.08	-0.08
15	0.00	0.00	0.00	0.14	0.37	0.57	0.74	0.88	0.99	1.03	1.05	1.07	1.08

Table S V. Spin density variations of each residue in peptide 15 with residue number n=15 in different strength E_{app}

Figure S8. SOMO distributions of α -helical peptides with different chain lengths (the number of residue units, n) along with E_{app} .

7. Comparison of the Peptides in This Work and Ideal α-Helix

Figure S9. Geometric structure parameters comparisons of the α -helical peptides with different chain lengths (the number of residue units, n) in this work and the ideal helixes. Atomic display: C-yellow, H-blue, O-red, N-pink. The ideal data from the work of Pauling and coworkers.¹⁻²

References:

- Pauling, L.; Corey, R. B.; Branson, H. R. The Structure of Proteins: Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain. *Proc. Natl. Acad. Sci.* 1951, *37*, 205–211.
- Pauling, L.; Corey, R. B. Atomic Coordinates and Structure Factors for Two Helical Configurations of Polypeptide Chains. *Proc. Natl. Acad. Sci.* 1951, *37*, 235–240.

8. Behaviors of Free Amino and Carboxyl Groups at Terminus of α-Helical Oligopeptides (NH2-(CO-CH2-NH)_n-COOH) in the Applied Electric Field

Figure S10. The variations of vertical electron affinities (VEAs) of α -helical oligopeptides with different chain lengths (n denotes the number of residue) with the increase of E_{app} . VEA = $E_n - E_a$, where E_n and E_a represent the total energies of a neutral structure and its corresponding anion in the same E_{app} , respectively.

Figure S11. The variations of frontier molecular orbital energies of α -helical oligopeptides with different chain lengths (n denotes the number of residues) with the increase of E_{app} . (a) the LUMO energies, and (b) the SOMO energies.

Figure S12. Variations of dipole moments of α -helical oligopeptides with different chain lengths (n denotes the number of residue) in E_{app}. (a) neutral peptides, and (b) the difference $(\Delta \mu)$ between the anionic and neutral peptides: $\Delta \mu = \mu_a - \mu_n$, where μ_n and μ_a represent the dipole moments of a neutral structure and its corresponding anion in the same E_{app}, respectively.

Figure S13. LUMO distributions of α -helical oligopeptides with different chain lengths (the number of residue units, n) along with E_{app} .

Figure S14. Spin density distributions of α -helical peptides with different chain lengths (the number of residue units, n) along with E_{app} .