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I. Details on training neural networks 

In the embedded atom neural network (EANN) approach1 and its piecewise 

version (PEANN), the weights and biases of atomic NNs along with the atomic 

expansion coefficients were determined by minimizing the cost function defined by 

root-mean-errors between ab initio potential energies and atomic forces with respect to 

Cartesian coordinates and corresponding NN outputs2, 
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Here, w   is a collection of all adjustable parameters, Ndata is the number of 

configurations in the training set. NN

iE , Ref

iE , 
NN

iF  and Ref

iF  are potential energies 

and atomic force vectors of ith configuration obtained by NN and reference ab initio 

calculations, respectively. Note that each NN

iE  and 
NN

iF  are the sum of atomic NN 

outputs and for the atomic NN parameters are identical for same element. An efficient 

hybrid extreme machine learning Levenberg-Marquardt (ELM-LM) algorithm was 

employed to optimize these adjustable parameters3.  

For all systems discussed in this work, the NN structures consist of two hidden 

layers. To make a fair comparison, the number of neurons in each hidden layer, the 

number of descriptors, as well as the cutoff radius (rc) were all kept the same for in 

EANN and PEANN potentials of each system. Table S1 gives such information for the 

four benchmark condensed phase systems, namely Cu, Ge, Mo, and water. Also 

compared in Table S1 are the computational costs of evaluating individually the inter-

nuclear distances within rc, the density-like structural descriptors, and NNs (plus the 

rest minor contributions), respectively. Other hyperparameters to determine the density-



like descriptors are listed in Tables S1-S5 for PEANN and Tables S6-S9 for EANN, for 

Cu, Ge, Mo, and water in sequence. Note that for the water system, we have applied 

the CUR matrix decomposition algorithm4 to select the optimal descriptors that best 

represent the training set, as used by Ceriotti and coworkers to optimize the selection 

of Behler-Parrinello type atom centered symmetry functions5. 

II. Molecular dynamics simulations 

   To demonstrate the comparable performance of EANN and PEANN as other 

machine learning models, as done in Ref. 12, we have predicted material properties 

such as phonon dispersion curves, as well as energies and forces at unseen structures, 

taking Mo as an example (this is already the system with largest errors). To this end, in 

Fig. S1, we compare the DFT calculated phonon spectrum for 3×3×3 bulk Mo with the 

results predicted by all machine learning models discussed in the main text. In addition, 

following Zuo et al.12, we have performed 250 ps NVT classical molecular dynamics 

(MD) simulations for a 3×3×3 bulk Mo with a 0.1 fs time step at 1300K maintained 

with Andersen thermostat, and extracted 40 snapshots with a time interval of 2.5 ps. It 

should be noted that none of the training and testing data were obtained from such high 

temperature MD simulations and the sampled configurations could be therefore very 

different and unknown, serving as good candidates for testing the extrapolability of 

machine learning potentials. The energy and force error distributions of our EANN and 

PEANN model are compared in Fig S2 with other machine learning models whose 

results are extracted from Ref. 12. 



To validate the accuracy of our PEANN and EANN potentials for liquid water, we 

compare the O-O, O-H and H-H radial distribution functions (RDFs) of liquid water 

obtained by the classical molecular dynamics (MD) simulations using the TIP4P model 

in Ref. 6, Behler-Parrinello NN (BPNN) potential in Ref. 7, EANN and PEANN 

potentials in this work, respectively. MD simulations have been performed with 64 

water molecules in a cubic box with its side length of 12.42 Å at temperature of 300 K. 

A total of 20 ps NVT MD simulations with a time step of 0.2 fs. The Andersen 

thermostat8 was used for keeping the temperature in the simulations of the 

PEANN/EANN potentials in a modified VENUS code9, while the Nose-Hoover Chains 

algorithm10 was used for the TIP4P and BPNN models implemented with LAMMPS11, 

respectively. It is found that the TIP4P force field requires a longer cutoff radius and 

long-range corrections to yield the correct description of RDFs as shown in Fig. 4, and 

our setup thus follows the original publication6 where the short-range interactions were 

truncated at 7.75 Å. 
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Table S1: NN structures denoted by the number of neurons in the input (descriptors), 

hidden, and output layers, the cutoff radii, as well as individual computational costs 

(μs/atom/CPU-core/step) of evaluating individually the inter-nuclear distances within 

rc, the density-like structural descriptors, and NNs (plus the rest minor contributions), 

respectively. NN structures and cutoff radii are identical for EANN and PEANN. 

System NN structure rc (Å) 

Individual costs: 

Distances/Descriptors/Others 

PEANN EANN 

Cu 10×10×10×1 4.1 1.2/1.9/1.8 1.2/3.5/1.8 

Ge 15×15×15×1 5.0 1.2/3.8/2.6 1.3/7.8/2.5 

Mo 16×16×16×1 5.0 1.7/4.2/2.8 1.6/7.9/2.5 

H2O 33×20×20×1 6.3 3.3/23.9/6.5 3.3/66.3/8.0 

 

  



Table S2: Hyperparameters of the piecewise descriptors of the PEANN Cu potential. 

Numbering Lmax r
in (Å) r

out (Å) α 

1 0/1 0.50 1.70 12.83 

2 0/1 1.10 2.30 6.04 

3 0/1 1.70 2.90 2.85 

4 0/1 2.30 3.50 1.35 

5 0/1 2.90 4.10 0.63 

 

 

  



Table S3: Hyperparameters of the piecewise descriptors of the PEANN Ge potential. 

Numbering Lmax r
in (Å) r

out (Å) α 

1 0/1/2 1.00 2.09 9.35 

2 0/1/2 1.73 2.82 3.76 

3 0/1/2 2.45 3.54 1.51 

4 0/1/2 3.18 4.27 0.61 

5 0/1/2 3.91 5.00 0.24 

 

  



Table S4: Hyperparameters of the piecewise descriptors of the PEANN Mo potential.  

Numbering Lmax r
in (Å) r

out (Å) α 

1 0/1 1.50 2.00 1.60 

2 0/1 0.43 2.43 7.49 

3 0/1 0.86 2.86 3.66 

4 0/1 1.29 3.29 0.62 

5 0/1 1.71 3.71 0.19 

6 0/1 3.04 4.14 0.02 

7 0/1 3.17 4.57 0.02 

8 0/1 3.60 5.00 0.01 

 

 

  



Table S5: Hyperparameters of the piecewise descriptors of the PEANN bulk water 

potential. 

Numbering Central atom Lmax r
in (Å) r

out (Å) α 

1 O 0/1/2 -0.10 1.10 12.97 

2 O 0/1/2 0.43 1.53 4.45 

3 O 0/1/2 0.06 2.06 1.92 

4 O 0/1/2 0.89 2.59 2.97 

5 O 0/1/2 1.72 3.12 1.28×10-1 

6 O 0/1/2 1.95 3.65 1.13×10-1 

7 O 0/1/2 3.78 4.18 2.96×10-2 

8 O 0/1/2 3.31 4.71 1.42×10-2 

9 O 0/1/2 3.84 5.24 6.83×10-3 

10 O 0/1/2 4.37 5.77 3.27×10-3 

11 O 0/1/2 4.90 6.30 1.57×10-3 

1 H 0/1/2 -0.40 1.00 12.12 

2 H 0/1/2 -0.47 1.57 3.84 

3 H 0/1/2 0.06 2.06 1.84 

4 H 0/1/2 0.59 2.59 1.16 

5 H 0/1/2 1.72 3.12 1.29×10-1 

6 H 0/1/2 2.25 3.65 6.19×10-2 

7 H 0/1/2 2.78 4.18 2.97×10-2 

8 H 0/1/2 3.31 4.71 1.42×10-2 

9 H 0/1/2 3.84 5.24 6.83×10-3 

10 H 0/1/2 4.37 5.77 3.27×10-3 

11 H 0/1/2 4.90 6.30 1.57×10-3 

   



Table S6: Hyperparameters of the descriptors of the EANN Cu potential. 

Numbering Lmax r
s (Å) α (Å-2) 

1 0/1 0.00 0.22 

2 0/1 0.95 0.22 

3 0/1 1.90 0.22 

4 0/1 2.85 0.22 

5 0/1 3.80 0.22 

 

 

  



Table S7: Hyperparameters of the descriptors of the EANN Ge potential. 

Numbering Lmax r
s(Å) α (Å-2) 

1 0/1/2 0.00 0.15 

2 0/1/2 1.15 0.15 

3 0/1/2 2.30 0.15 

4 0/1/2 3.45 0.15 

5 0/1/2 4.60 0.15 

 

  



Table S8: Hyperparameters of the descriptors of the EANN Mo potential. 

Numbering Lmax r
s(Å) α (Å-2) 

1 0/1 0.00 0.43 

2 0/1 0.68 0.43 

3 0/1 1.36 0.43 

4 0/1 2.04 0.43 

5 0/1 2.72 0.43 

6 0/1 3.40 0.43 

7 0/1 4.08 0.43 

8 0/1 4.76 0.43 

 

  



Table S9: Hyperparameters of the descriptors of the EANN bulk water potential. 

Numbering Central atom Lmax r
s(Å) α (Å-2) 

1 O 0/1/2 0.00 0.54 

2 O 0/1/2 0.61 0.54 

3 O 0/1/2 1.22 0.54 

4 O 0/1/2 1.83 0.54 

5 O 0/1/2 2.44 0.54 

6 O 0/1/2 3.05 0.54 

7 O 0/1/2 3.66 0.54 

8 O 0/1/2 4.27 0.54 

9 O 0/1/2 4.88 0.54 

10 O 0/1/2 5.49 0.54 

11 O 0/1/2 6.10 0.54 

1 H 0/1/2 0.00 0.54 

2 H 0/1/2 0.61 0.54 

3 H 0/1/2 1.22 0.54 

4 H 0/1/2 1.83 0.54 

5 H 0/1/2 2.44 0.54 

6 H 0/1/2 3.05 0.54 

7 H 0/1/2 3.66 0.54 

8 H 0/1/2 4.27 0.54 

9 H 0/1/2 4.88 0.54 

10 H 0/1/2 5.49 0.54 

11 H 0/1/2 6.10 0.54 

 

  



 

Fig. S1 Phonon spectra for 3×3×3 bulk Mo obtained by (a) DFT, (b) GAP, (c) MTP, (d) 

NNP, (e) SNAP, (f) QSNAP (g) EANN and (h) PEANN. Note: (a)~(f) were extracted 

from Ref. 12. The phonon spectra were plotted along the path through the Brillouin 

zone given by the high-symmetry points Γ-Η-Ν-Γ-Ρ-Η-Ρ-Ν.  

 

  



 

Fig. S2 Predicted error distributions of (a) energies and (b) atomic forces with 40 

structures sampled from MD trajectories based on each ML model. The color filled 

areas are the interquartile range and the lines between them represent the median.  

 

  



 

Fig. S3 Comparison of one-dimensional potential energy curves of BPNN and PEANN 

potentials as a function of the displacement of (a) a Cu atom and (b) a H2O molecule 

relative to its original position in a random configuration of Cu and water bulk 

structures, respectively. 


