Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Supplementary Material

The interaction of defects in mayenite structure

Sergey N. Shkerin,^a* Ekatherina S. Ulyanova, ^b Sergey V. Naumov,^c Aleksandr N. Shmakov^{d,e}, Anna S. Tolkacheva, ^{a,f}

^a Institute of High-Temperature Electrochemistry, UB RAS, 620137 Ekaterinburg, Russia
^b Institute of Solid-State Chemistry UB RAS, 620137 Ekaterinburg, Russia
^cMikheev Institute of Metal Physics, UB RAS, 620990 Ekaterinburg, Russia
^d Boreskov Institute of Catalysis, SB RAS, 630090 Novosibirsk, Russia
^e Novosibirsk National Research State University, 630090 Novosibirsk, Russia
^f INMT Ural Federal University, 620002 Ekaterinburg
Corresponding author: a.s.tolkacheva@urfu.ru

			initial						H ₂ tr	eated				cera	amic	comments
Ar		Air ce	entre	Air per	iphery	Ar c	entre	Ar c	entre	Air c	centre	Air pe	riphery	at	HT	
ν	D	ν	D	ν	D half	ν	D half	ν	D half	ν	D half	ν	D half	ν	D half	
	half		half		width		width		width		width		width		width	
	widt		wid													
	h		th													
						54.3	3.1	53.7	3.7	54.7	3.6	54.2	4.4			L ₁
61.7	4.0	61.9	5.3	60.0	7.3	59.4	6.9	59.0	7.8	59.7	7.4	59.8	8.1			
67.5	67.5			67.1	10.7	69.3	11.7			67.9	11.4	68.7	12.1			L ₂
75.2	10.7	74.0	16.3	73.4	10.5	76.1	7.8	73.1	18.9	76.7	10.7	77.2	9.4			
84.3	6.4	87.7	12.4	83.6	10.3	83.3	6.9	83.8	5.0	84.3	6.5	84.5	7.2	89.2	7.5	X ₁
92.3	6.7	93.4	5.8	93.8	15.9	91.4	8.5	92.7	10.7	92.6	12.1	91.7	8.9	95.1	11.5	X ₂
		97.4	5.9			96.4	8.2									_
100.7	9.9	101.3	6.1			99.5	5.2	100.6	8.0	101.7	8.4	99.4	10.8			X ₃
107.7	7.2	107.3	11.1	107.4	16.4	105.9	9.0			107.7	6.4	108.0	5.4	107.2	19.6	
115.6	11.3	117.1	10.6	118.1	7.1	115.4	4.3	115.4	13.1	113.5	11.4	112.2	32.7	_	_	MO ₆
125.1	8.2	125.5	9.8	125.7	28.6			124.2	7.0	125.8	16.9			126.1	21.8	X ₄
131.5	7.3	132.0	8.3	133.7	27.3	131.7	48.8	130.6	7.8			136.9	20.8	139.3	30.3	'
140.0	14.0	138.1	9.6	141.8	16.0			137.5	8.1	140.8	17.6	140.6	5.0	144.7	14.6	
		144.6	10.1					143.9	12.8			147.8	13.0			
		150.4	79													
155.5	24.6	158.1	21.0	154.1	20.0	157.4	14.5	155.4	14.6	159.9	25.4	159.2	15.0	156.4	13.1	X ₅
												167.0	24.8	166.1	10.9	
173 3	14.1	175.4	23.2	174 7	25.8	174 7	28.3	173.8	31.5	178 1	17.5	174.0	15.8	175.3	19.0	G
1,0.0		1,011		1,,	-0.0		-0.5	1,0.0	51.0	17011	17.0	1,	10.0	1,010	17.0	$E_{\alpha} T(AlO_4)$
180.9	10.1															Ga
186.7	61									188.0	12.5	185.9	19.4	192.6	15.7	$E_{\alpha}T(Ca^{2+})AlO_{4}$
	0.1	199.0	15.5	200.3	13.7					198.1	13.4	202.6	14.2	172.0		5 ()
		177.0	10.0	200.5	10.1	227.2	11.7			170.1	10.1	202.0	11.2			1
							11./									
237.0	21.5	238.2	20.9	237.8	20.0	239.0	16.7	231.9	16.6							CaOc
		230.2				249.5	11.5	246.8	24.5	243.4	25.7	248 7	28.9	_ 1	_ 1	E _a

Table S1. Raman activity of mayenite after air, Ar and H₂ treatment

266.8	29.2	267.7	29.8	267.4	29.7	263.9	19.1	265.4	13.7	265.8	20.4	267.1	13.9	261.6	30.1	$\begin{array}{c} G_3 \\ T_{2g} T(Ca^{2+}) \\ AlO_4 \end{array}$
292.0	21.3	294.4	24.1					283.1	43.9	298.9	34.9			281.3	21.0	G ₄
								302.3	18.6			301.7	43.9	298.7	20.7	Eg
310.2	22.2	310.9	20.8	309.2	13.0	309.5	14.2	310.3	13.4	311.6	17.7	312.4	17.5	310.1	7.5	v_2 , AlO ₄
				314.0	39.1			318.3	7.8	322.9	9.7			319.0	21.9	
326.0	15.7	327.5	20.1	326.3	53.4	324.3	47.7	328.6	27.5	329.7	16.0	332.6	20.3			G_5 R(AlO ₄) A _{1g}
														333.3	38.7	
340.2	25.7	344.2	18.6	346.8	11.5	332.7	14.6			343.8	31.7	347.4	20.1	335.5	4.9	G ₆
367.7	26.6					367.2	15.6	360.3	45.4	370.3	39.5	359.8	23.8	379.9	32.6	AlO ₄
						384.9	23.0	387.3	16.2	401.7	50.1	377.4	24.3			
								410.8	5.3			396.2	26.5			
								416.4	4.1			414.2	16.0			
										434.4	22.5	431.2	33.4			
										440.4	9.4					
451.3	42.0															
472.0	54.4	476.8	56.3	478.6	66.0											
493.2	28.3	494.7	32.2	494.8	32.7					499.7	34.2					
518.6	19.2	519.3	20.1	519.8	20.2	520.3	12.4	520.2	19.8	516.6	17.1	520.3	17.7	509.0	45.4	G ₇ T _{2g}
						521.0	28.0	520.8	10.2	520.8	11.2	520.2	9.8	510.5	24.4	v_4 AlO ₄
								524.1	44.1	525.3	15.3	521.2	32.9	517.2	90.9	
										525.3	32.0					
531.5	53.4															AlO ₆
533.1	17.2	534.4	16.4	535.0	16.4											Eg
550.8	13.8	550.4	16.5	550.6	15.9	542.8	78.4			553.1	13.7	552.6	98.4	- !	- !	
568.9	21.1															
576.9	15.8	575.6	28.8	574.9	33.6					575.6	26.3					
588.7	11.0							587.6	41.1							
										601.3	15.4					
612.2	36.0			611.2	15.0					616.1	18.3					
652.7	24.2	653.6	21.3	654.7	23.0											
681.1	20.5	680.8	13.6	680.8	20.0									ļ		

		690.4	41.5	710.3	57.0									706.0	6.3	
		719.5	30.1											714.9	14.3	
738.8	12.2	737.6	16.2	740.8	15.4							739.8	10.8	734.1	20.2	incaged oxygen
		749.0	21.5	754.3	15.4	759.0	11.3			754.1	41.2					
769.8	14.7	769.9	14.8	769.6	14.9	770.3	10.7	770.3	9.9	771.3	10.0	770.2	9.8	760.4	27.5	G ₈ A _{1g}
773.2	35.6	773.1	35.2	774.3	31.4	772.9	19.0	772.2	19.6	772.6	17.7	772.0	17.4	784.4	35.1	v_1 , AlO ₄
								776.5	6.7			775.1	37.0			
						779.1	49.1	776.5	44.9	778.0	32.2					
826.0	45.2	822.1	45.8	838.1	88.0	828.6	29.6	833.3	47.4	832.6	38.5	829.4	52.5	815.8	28.3	G ₉
841.9	9.4			848.3	13.1	843.3	16.7	841.4	11.9	843.8	22.2	840.5	13.6			T _{2g} AlO ₄
												844.	4.0			
		855.0	40.8			856.7	8.3	859.0	14.8	857.0	7.5	856.6	6.9	843.2	17.7	G ₁₀
863.4	12.4	863.6	12.7	863.0	13.3	864.8	19.5			863.4	11.8	864.5	13.8			T _{2g} AlO ₄
				871.6	17.5											
879.1	26.2	880.1	28.8	883.0	16.8	884.3	17.2	883.8	11.5	884.3	25.0	883.7	16.5	861.9	19.4	G ₁₁
								884.3	24.7	884.7	13.7			877.8	49.7	T _{2g}
				895.4	29.7	898.1	13.1					895.9	47.6			v_3 , AlO ₄
		907.7	20.6													
914.3	25.7	919.4	14.5	917.2	21.2	915.5	24.6	916.3	23.5	916.5	17.3	918.6	17.9	+		G ₁₂ E _g AlO ₄
		951.3	13.9													incaged oxygen
		973.6	36.2	972.9	37.2											
		1036.5	10.4]

(Grossular [17]	/[18]			comment			
	Ca ₃ Al ₂ (SiO	<u>4)3</u>		C	a _{3-x} (Ca, Al	$)_2(AlO_4)_3$		
	A _{1g}	Eg	F _{2g}		A _{1g}	Eg	F _{2g}	
(Si-O) _{str.}			1007	$Si \rightarrow Al$		916		
			/1000					
		904					883	v ₃ AlO ₄
	880						863	
	/876							
			848]			830	
			/821					
			827]	770			$v_1 AlO_4$
			/777					
(Si-O) _{bend}			630	$Si \rightarrow Al$			520	$v_4 AlO_4$
			/623					
		592						
			582				340	
	550							
	/540							
		529		1				
		/502						
			512					
			483					
		420						
$R(SiO_4)^{4-}$			389	$Si \rightarrow Al$	326		326	
(/405					
	376	373				311		$v_2 AlO_4$
		/364						124
			351					
			333					
		320						
$T(SiO_4)^{4-}$		181		$Si \rightarrow Al$		173		E _a T-AlO ₄
1(0104)		/172				1,5		q 1 1104
$T(Ca^{2+})$		186		$Si \rightarrow Al$		190		
()		/194						
		· - w	280	1			267	
			/268					

Table S2. A comparison of bands correlation for calcium silicates and aluminates of garnet structure

	247			CaO ₆
	/232			
Assumed to be	_		132	X4
$T(Ca^{2+})$	/135			
[18]	_		108	X ₃
	/108			

					Sing	gle crystals						comment	Reduced	ceramic	IR, air,
		ini	tial					H ₂ tr	eated						powder
A	r	Air c	entral	Air per	riphery	A	r	Air ce	entral	Air periphery					[1]
ν	D half	ν	D half	ν	D half	ν	D half	ν	D half	ν	D half		ν	D half	
	width		width		width		width		width		width			width	
1224.3	46.7	1224.0	33.7	1225.0	48.3							E ₁ O			
		1235.1	88.3												
						1257.8	59.0	1245.6	59.9	1251.5	69.0	E ₁ R			
						1259.0	31.6	1259.9	31.8	1259.5	30.2	Δv_o	1259.3	42.4	
						1271.1	142.7			1268.3	174.0				
1316.9	1316.9 143.3							1333.2	233.7			Δv_1	1310.8	196.5	
		1347.8	101.4			1357.3	22.2	1343.7	37.7	1353.0	60.1				
						1367.6	76.7	1359.8	26.7	1358.7	25.2		1388.1	72.1	
								1384.4	41.0	1387.6	39.1		1393.2	25.7	
1432.3	54.8			1423.7	278.1	1440.4	43.6					Δv_2			1420
1454.4	43.4	1450.9	82.0	1451.6	70.6	1459.9	93.4	1461.8	83.5	1444.4	75.6	1	1456.0	42.4	1476
												1			
								1490.4	24.8	1504.0	47.5				
		1534.1	57.6	1536.0	56.5			1511.7	38.2				1513.5	125.2	1531
1546.0	27.3	1547.1	25.9	1547.2	26.0	1552.4	29.1	1546.6	37.7	1553.4	36.3	Δv_3	1560.7	50.1	
						1562.7	84.6			1585.7	132.3	1			
1612.3	36.0	1610.2	82.7	1610.8	78.3	1614.7	192.3	1615.5	163.7	1633.7	476.7		1641.3	73.3	1629
1621.4	405.7											1			
								1645.1	21.2						
						1680.1	48.9			1684.1	68.5		1673.2	304.8	
1716.1	47.6	1715.1	96.0	1717.6	101.8	1716.1	40.5	-	-	1722.4	33.4	EL1-			1734
				1750.8	26.3					1751.0	62.9				

S3. Data on the frequency and half-width of the observed reflections for the luminescence of the studied single crystal samples

		1767.0	43.0	1769.7	36.0	1765.0	84.5	1764.8	29.9				1766.0	27.1	
								1786.2	151.3				1773.3	101.7	
1812.1	61.1	1807.3	58.8	1806.4	59.5	1813.1	37.1			1823.8	119.4	E4	1809.2	217.9	
1864.0	44.7	1863.0	79.0	1861.1	86.3	1851.3	60.6	1856.1	89.6	1859.4	37.9	EL2			
										1888.7	35.9				
1928.5	80.5	1929.2	49.8	1930.0	49.8	1919.7	99.6	1935.9	76.7	1931.6	84.6	EL3			
		1966.3	307.4	1961.1	335.8								1977.6	291.3	
2029.6	73.5	2031.2	46.5	2031.4	47.0	2031.1	77.3	2026.5	98.8	2028.9	82.0	EL4			
2129.8	58.5	2133.4	42.7	2133.7	42.7	2126.2	62.1	2133.7	74.3	2127.5	77.3	EL5			
2195								2213.5	73.6						

References

[1] M. M. Rashad, A. G. Mostafa and D. A. Rayan, J. Mater. Sci.: Mater. Electron., 2016, 27, 2614–2623, DOI: 10.1007/s10854-015-4067-z.