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Microwave power dependence of the linewidth at 80 K 

Fig. S1a shows the microwave power dependence of the normalised EDMR spectra. The 

EDMR spectra were analysed by eqn (5) in the main text. Fig. S1b presents the microwave 

power dependence of the Gaussian and Lorentzian linewidths of the EDMR spectra. 

Gaussian and Lorentzian linewidths did not depend on microwave power. From the 

linewidth (δB = 0.5 mT) of the Lorentzian line shape, the lower limit of the lifetime (τ) 

of the weakly coupled e–h pair was estimated to be 1/τ = 8.6 × 107 s−1 (τ = 1.16 × 10−8 s) 

using the relationship δB ≈ h/gβτ. 

 

 

Fig. S1. (a) Microwave power dependence of normalised EDMR spectra of the VVD film 

of TIPS-Pn under N2 atmosphere at 80 K. (b) Microwave power dependence of the 

Gaussian and Lorentzian linewidths. 

 

Cyclic voltammogram 

The electrochemical property of TIPS-Pn was studied by cyclic voltammetry in CH2Cl2 

solution. TIPS-Pn showed a quasi-reversible wave for the redox couple at +0.402 V and 

−1.448 V vs., ferrocenium/ferrocene (Fc+/Fc) under identical conditions. 
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Fig. S2. Cyclic voltammograms of TIPS-Pn in CH2Cl2 containing 0.1 M TBAPF6 at room 

temperature. 

 

Temperature dependence of amplitude for Gaussian and Lorentzian components 

Fig. S3 shows the ratio of the amplitude and integral intensity of the Lorentzian to 

Gaussian component. The amplitude and integral intensity of the Lorentzian component 

were nearly same as that of the Gaussian component at temperatures below 150 K. 

However, the contribution of the Lorentzian component decreased as the temperature 

increased and remained constant at approximately 0.5 at temperatures over 200 K. 
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Fig. S3. (a) Temperature dependence of amplitude for Gaussian and Lorentzian 

components. (b) Temperature dependence of integral intensity for Gaussian and 

Lorentzian components. The black and red circles show Lorentzian and Gaussian 

amplitudes, respectively (fitting curves using eqn (5) in the main text). 

 

Analytical solutions of EDMR intensity 

S0-Born Process  

The EDMR behaviour could be explained by the carrier generation and deactivation 

process of the e-h pair, as illustrated in Scheme 1 (Scheme 1 in the main text). The 

intensity of the EDMR signal is defined as:  

𝐼EDMR = 𝐼on  𝐼off                    (S ) 

where Ion and Ioff denote the photocurrent intensity in the presence and absence of 

microwave irradiation, respectively. The photocurrent (I) is given as the sum of the 

product of the population density (ρ) of the spin sublevels and the dissociative efficiency 

(kdis).  

𝐼 = ∑ 𝑘𝑑𝑖𝑠𝜌𝑖

𝑆,𝑇+,𝑇0,𝑇−

𝑖

                (S ) 

The analytical solution of the EDMR data is derived by solving the simultaneous rate 

equations of the singlet e-h pairs 1(e-h) and the triplet e-h pairs 3(e-h) shown in Scheme 

S1. To reproduce the temperature dependence, the dissociative rate constant (kdis) of the 

carriers from the spin sublevels of 1,3(e-h) pairs was assumed to be a thermally activated 

process. Thus, the rate constant of carrier generation (kdis) is given by:  

𝑘dis = 𝑘0exp( 𝐸/𝑘B𝑇)                (S3) 

The rate constants kS, kT, kISC, and kESR are independent of the temperature. The population 

density (ρ) of each spin sublevel under ESR conditions can be obtained by solving eqn 

(S4).  
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𝑑𝜌𝑆
𝑜𝑛

𝑑𝑡
= 𝐼0  𝑘𝐼𝑆𝐶𝜌𝑆

𝑜𝑛  𝑘𝑑𝑖𝑠𝜌𝑆
𝑜𝑛  𝑘𝑆𝜌𝑆

𝑜𝑛 + 𝑘𝐼𝑆𝐶𝜌𝑇0
𝑜𝑛 =  

𝑑𝜌𝑇0
𝑜𝑛

𝑑𝑡
= 𝑘𝐼𝑆𝐶𝜌𝑆

𝑜𝑛  𝑘𝐼𝑆𝐶𝜌𝑇0
𝑜𝑛   𝑘𝐸𝑆𝑅𝜌𝑇0

𝑜𝑛  𝑘𝑑𝑖𝑠𝜌𝑇0
𝑜𝑛  𝑘𝑇𝜌𝑇0

𝑜𝑛 + 𝑘𝐸𝑆𝑅𝜌𝑇+
𝑜𝑛 + 𝑘𝐸𝑆𝑅𝜌𝑇−

𝑜𝑛 =  

𝑑𝜌𝑇+
𝑜𝑛

𝑑𝑡
= 𝑘𝐸𝑆𝑅𝜌𝑇0

𝑜𝑛  𝑘𝐸𝑆𝑅𝜌𝑇+
𝑜𝑛  𝑘𝑑𝑖𝑠𝜌𝑇+

𝑜𝑛  𝑘𝑇𝜌𝑇+
𝑜𝑛 =  

𝑑𝜌𝑇−
𝑜𝑛

𝑑𝑡
= 𝑘𝐸𝑆𝑅𝜌𝑇0

𝑜𝑛  𝑘𝐸𝑆𝑅𝜌𝑇−
𝑜𝑛  𝑘𝑑𝑖𝑠𝜌𝑇−

𝑜𝑛  𝑘𝑇𝜌𝑇−
𝑜𝑛 =  

(S ) 

The analytical solutions of the densities (𝜌𝑖
𝑜𝑛) are given as follows:  

𝜌𝑆 = 𝐼0
𝑘𝐼𝑆𝐶𝑘𝐸𝑆𝑅 + (𝑘𝑑𝑖𝑠 + 𝑘𝑇)(𝑘𝐼𝑆𝐶 + 3𝑘𝐸𝑆𝑅 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇)

𝐹 + 𝐺
       (S5) 

𝜌𝑇0 = 𝐼0
𝑘𝐼𝑆𝐶(𝑘𝐸𝑆𝑅 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇)

𝐹 + 𝐺
               (S6) 

𝜌𝑇+ = 𝜌𝑇− = 𝐼0
𝑘𝐼𝑆𝐶𝑘𝐸𝑆𝑅
𝐹 + 𝐺

      ,                     (S7) 

where 

𝐹 = 𝑘𝐼𝑆𝐶(𝑘𝑑𝑖𝑠 + 𝑘𝑆)(𝑘𝐸𝑆𝑅 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇) +  𝑘𝐸𝑆𝑅(𝑘𝑑𝑖𝑠 + 𝑘𝑇)(𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑆)      (S ) 

𝐺 = (𝑘𝑑𝑖𝑠 + 𝑘𝑇)(𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑆)(𝑘𝐸𝑆𝑅 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇)                                                   (S9) 

Substituting eqns (S5) – (S7) into eqn (S2), the photocurrent intensity under resonance 

conditions is given by 

𝐼on = 𝑘𝑑𝑖𝑠𝐼0
 𝑘𝐼𝑆𝐶𝑘𝐸𝑆𝑅 + (𝑘𝑑𝑖𝑠 + 𝑘𝑇)( 𝑘𝐼𝑆𝐶 + 3𝑘𝐸𝑆𝑅 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇)

𝐹 + 𝐺
                 (S  ) 

The analytical solutions of the photocurrent intensity and the population density (𝜌𝑖
𝑜𝑓𝑓

) 

of each spin sublevel under non-resonance conditions can be obtained by substituting 

𝑘𝐸𝑆𝑅 =   to eqns (S5) – (S7):  

The analytical solutions of the densities (𝜌𝑖
𝑜𝑓𝑓

) are obtained as follows:  

𝜌𝑆
𝑜𝑓𝑓

= 𝐼0
𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇

𝑘𝐼𝑆𝐶(𝑘𝑑𝑖𝑠 + 𝑘𝑆) + 𝑘𝐼𝑆𝐶(𝑘𝑑𝑖𝑠 + 𝑘𝑇) + (𝑘𝑑𝑖𝑠 + 𝑘𝑆)(𝑘𝑑𝑖𝑠 + 𝑘𝑇)
             (S  ) 

𝜌𝑇0
𝑜𝑓𝑓

= 𝐼0
𝑘𝐼𝑆𝐶

𝑘𝐼𝑆𝐶(𝑘𝑑𝑖𝑠 + 𝑘𝑆) + 𝑘𝐼𝑆𝐶(𝑘𝑑𝑖𝑠 + 𝑘𝑇) + (𝑘𝑑𝑖𝑠 + 𝑘𝑆)(𝑘𝑑𝑖𝑠 + 𝑘𝑇)
             (S  ) 

𝜌𝑇+
𝑜𝑓𝑓

= 𝜌𝑇−
𝑜𝑓𝑓

=               (S 3) 

Substituting eqns (S11) – (S13) into eqn (S2), the photocurrent intensity under resonance 

conditions is given by 

𝐼𝑜𝑓𝑓 = 𝑘𝑑𝑖𝑠𝐼0
 𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇

𝑘𝐼𝑆𝐶(𝑘𝑑𝑖𝑠 + 𝑘𝑆) + 𝑘𝐼𝑆𝐶(𝑘𝑑𝑖𝑠 + 𝑘𝑇) + (𝑘𝑑𝑖𝑠 + 𝑘𝑆)(𝑘𝑑𝑖𝑠 + 𝑘𝑇)
        (S  ) 

In addition, substituting eqns (S10) and (S14) into eqn (S1), the EDMR intensity (𝐼EDMR) 
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can be expressed as  

𝐼EDMR =
 𝐼0𝑘𝐸𝑆𝑅𝑘𝑑𝑖𝑠𝑘𝐼𝑆𝐶

2 (𝑘𝑆  𝑘𝑇)

𝐴𝐶
          ,                                 (S 5) 

where 

𝐴 = (𝑘𝑇 + 𝑘𝑑𝑖𝑠)(𝑘𝑆 + 𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠) + 𝑘𝐼𝑆𝐶(𝑘𝑆 + 𝑘𝑑𝑖𝑠)                               (S 6) 

and 

𝐶 = 𝑘𝐼𝑆𝐶(𝑘𝑆 + 𝑘𝑑𝑖𝑠)(𝑘𝐸𝑆𝑅 + 𝑘𝑇 + 𝑘𝑑𝑖𝑠) 

+(𝑘𝑆 + 𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠)(𝑘𝑇 + 𝑘𝑑𝑖𝑠)(3𝑘𝐸𝑆𝑅 + 𝑘𝑇 + 𝑘𝑑𝑖𝑠)            (S 7) 

 

Scheme S1. Excited-state dynamics and carrier generation model in the VVD film of 

TIPS-Pn. 

 

 

Fig. S4 shows the temperature dependence of kdis. The maximum intensity of EDMR is 

obtained when the kdis value is close to those of kS and kT, which was achieved at 200 K 

in the current testing system (Fig. 5 in the main text).  
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Fig. S4. Temperature dependence of kdis (black curve; k0 = 1.0 × 109 s−1, E/kB = 1103 K). 

kS (blue curve; kS = 3.0 × 106 s−1), and kT (red curve; kT = 1.5 × 107 s−1) are temperature 

independent rate constants used for the simulation in the main text. 

 

Fig. S5 shows the temperature dependence of the populations (𝜌𝑖) of each spin sublevel. 

In the non-resonance condition, there is no population of |T+⟩ and |T−⟩. However, in the 

resonant condition, non-zero populations of |T+⟩ and |T−⟩ are generated with a decrease 

in |S⟩ population. 

 

 
Fig. S5. (a) Temperature dependence of the populations (𝜌𝑖) of each spin sublevel under 

resonance condition. (b) Temperature dependence under non-resonance condition. In 

these simulations, kS = 3.0 × 106 s−1, kT = 1.5 × 107 s−1, k0 = 1.0 × 109 s−1, E/kB = 1103 K, 

kESR = 1.0 × 107 s−1, and kISC = 1.0 × 107 s−1 were used. 
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Fig. S6 shows the E/kB and k0 dependence of the EDMR peak. Although the temperature 

giving the peak position and the temperature width were depended on the kdis parameters 

(k0 and E), the maximum intensity was independent of those parameters. The peak 

temperature was proportional to E/kB, and not to k0.  

 

 

Fig. S6. (a) E/kB dependence of the EDMR peak and (b) peak temperature vs. activation 

energy (E/kB). (kS = 1.0 × 107 s−1, kT = 2.0 × 107 s−1, k0 = 1.0 × 109 s−1, kESR = 1.0 × 107 

s−1, kISC = 1.0 × 107 s−1). (c) k0 dependence of the EDMR behaviour and (d) peak 

temperature vs. k0. (kS = 1.0 × 107 s−1, kT = 1.4 × 107 s−1, E/kB = 1000 K, kESR = 1.0 × 107 

s−1, kISC = 1.0 × 107 s−1). 

 

Fig. S7 shows the EDMR intensity as a function of the simulated kT. The analytical 

solution shows that the sign of the EDRM signal is determined by the difference in the 

rate constants, (kS − kT). EDMR was not observed when kS = kT = 0. The signal is positive 

when kS > kT and negative when kS < kT. The EDMR intensity was significantly decreased 

when kT was sufficiently higher than kdis. The peak position depended on kT when kT was 

close to the other transition rate constants (kISC and kESR). 
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Fig. S7. The kT dependence of the EDMR behaviour (a) kT = 106 to 107 s−1 and (b) kT = 

107 to 108 s−1. (c) Peak temperature vs. kT. (d) Maximum intensity vs. kT. (kS = 1.0 × 107 

s−1, k0 =1.0 × 109 s−1, E/kB = 1000 K, kESR = 1.0 × 107 s−1, kISC = 1.0 × 107 s−1). 

 

Fig. S8 shows the simulated kESR and kISC dependence of the EDMR intensity. The 

temperature dependence of the EDMR peak kESR is similar to that of kISC. The peak 

position depended on kESR and kISC, when kESR and kISC were close to the other rate 

constants. The behaviours were quite similar to those presented in Fig. S7d, but a small 

change was observed. The EDMR signal was not observed when kESR = 0 and/or kISC = 0. 

The maximum intensity (negative sign) increased monotonically with an increase in kESR 

and kISC. 
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Fig. S8. The kESR dependence of the EDMR behaviour. (a) Peak temperature vs. kESR. (b) 

Maximum intensity vs. kESR. (kS = 1.0 × 107 s−1, kT = 2.0 × 107 s−1, k0 =1.0 × 109 s−1, E/kB 

= 1000 K, kISC = 1.0 × 107 s−1), and the kISC dependence of the EDMR behaviour. (c) Peak 

temperature vs. kISC. (d) Maximum intensity vs. kISC. (kS = 1.0 × 107 s−1, kT = 2.0 × 107 

s−1, k0 =1.0 × 109 s−1, E/kB = 1000 K, kESR = 1.0 × 107 s−1), 

 

Analytical solutions of EDMR intensity  

T0-Born Process 

In this study, we assumed the population at |S⟩ from Rehm-Weller’s equation. However, 

herein the analytical solution when the population at |T0⟩ is solved. The EDMR behaviour 

can be explained by the carrier generation and deactivation process of the e-h pair, as 

illustrated in Scheme 2. The intensity of the EDMR signal is defined by eqn (S1). 

The analytical solution of the EDMR may be derived by solving the simultaneous rate 

equations of singlet e-h pairs 1(e-h) and triplet e-h pairs 3(e-h), as shown in Scheme S2. 

To reproduce the temperature dependence, the dissociative rate constant (kdis) to the 

carriers from the spin sublevels of 1,3(e-h) pairs was assumed to be a thermally activated 

process. Thus, the rate constant of carrier generation (kdis) is given by eqn (S3). 
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The population density (ρ) of each spin sublevel under ESR conditions can be obtained 

by solving the following simultaneous equations.  

𝑑𝜌𝑆
𝑜𝑛

𝑑𝑡
=  𝑘𝐼𝑆𝐶𝜌𝑆

𝑜𝑛  𝑘𝑑𝑖𝑠𝜌𝑆
𝑜𝑛  𝑘𝑆𝜌𝑆

𝑜𝑛 + 𝑘𝐼𝑆𝐶𝜌𝑇0
𝑜𝑛 =  

𝑑𝜌𝑇0
𝑜𝑛

𝑑𝑡
= 𝐼0  𝑘𝐼𝑆𝐶𝜌𝑆

𝑜𝑛  𝑘𝐼𝑆𝐶𝜌𝑇0
𝑜𝑛   𝑘𝐸𝑆𝑅𝜌𝑇0

𝑜𝑛  𝑘𝑑𝑖𝑠𝜌𝑇0
𝑜𝑛  𝑘𝑇𝜌𝑇0

𝑜𝑛 + 𝑘𝐸𝑆𝑅𝜌𝑇+
𝑜𝑛 + 𝑘𝐸𝑆𝑅𝜌𝑇−

𝑜𝑛 =  

𝑑𝜌𝑇+
𝑜𝑛

𝑑𝑡
= 𝑘𝐸𝑆𝑅𝜌𝑇0

𝑜𝑛  𝑘𝐸𝑆𝑅𝜌𝑇+
𝑜𝑛  𝑘𝑑𝑖𝑠𝜌𝑇+

𝑜𝑛  𝑘𝑇𝜌𝑇+
𝑜𝑛 =  

𝑑𝜌𝑇−
𝑜𝑛

𝑑𝑡
= 𝑘𝐸𝑆𝑅𝜌𝑇0

𝑜𝑛 + 𝑘𝐸𝑆𝑅𝜌𝑇−
𝑜𝑛  𝑘𝑑𝑖𝑠𝜌𝑇−

𝑜𝑛  𝑘𝑇𝜌𝑇−
𝑜𝑛 =  

 

The analytical solutions of the densities (𝜌𝑖
𝑜𝑛) are as follows:  

𝜌𝑆 = 𝐼0
𝑘𝐼𝑆𝐶(𝑘𝐸𝑆𝑅 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇)

𝐻 + 𝐼
       (S 9) 

𝜌𝑇0 = 𝐼0
(𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑆)(𝑘𝐸𝑆𝑅 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇)

𝐻 + 𝐼
               (S  ) 

𝜌𝑇+ = 𝜌𝑇− = 𝐼0
𝑘𝐸𝑆𝑅(𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑆)

𝐻 + 𝐼
                           (S  ) 

where 

𝐻 = (𝑘𝑆 + 𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠)(𝑘𝑇 + 𝑘𝑑𝑖𝑠)(3𝑘𝐸𝑆𝑅 + 𝑘𝑇 + 𝑘𝑑𝑖𝑠)                               (S  ) 

𝐼 = 𝑘𝐼𝑆𝐶(𝑘𝑆 + 𝑘𝑑𝑖𝑠)(𝑘𝐸𝑆𝑅 + 𝑘𝑇 + 𝑘𝑑𝑖𝑠)                                                              (S 3) 

Substituting eqns (S19) –(S21) into eqn (S2), the photocurrent intensity under resonance 

conditions is given by 

𝐼on = 

𝑘𝑑𝑖𝑠𝐼0
𝑘𝐼𝑆𝐶(𝑘𝐸𝑆𝑅 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇) + (𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑆)(𝑘𝐸𝑆𝑅 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇)+ 𝑘𝐸𝑆𝑅(𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑆)

𝐻 + 𝐼
 

(𝑆  ) 

The analytical solutions of the photocurrent intensity and the population density (𝜌𝑖
𝑜𝑓𝑓

) 

of each spin sublevel under non-resonance conditions are obtained by substituting 

𝑘𝐸𝑆𝑅 =   to eqns (S19) – (S21).  

The analytical solutions of the densities (𝜌𝑖
𝑜𝑓𝑓

) are as follows:  

𝜌𝑆
𝑜𝑓𝑓

= 𝐼0
𝑘𝐼𝑆𝐶

(𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑆)(𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇)  𝑘𝐼𝑆𝐶
2              (S 5) 

𝜌𝑇0
𝑜𝑓𝑓

= 𝐼0
𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇

(𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑆)(𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇)  𝑘𝐼𝑆𝐶
2              (S 6) 

𝜌𝑇+
𝑜𝑓𝑓

= 𝜌𝑇−
𝑜𝑓𝑓

=               (S 7) 

Substituting eqns (S25) – (S27) into eqn (S2), the photocurrent intensity under resonance 

(S  ) 
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conditions is given by 

𝐼𝑜𝑓𝑓 = 𝑘𝑑𝑖𝑠𝐼0
 𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇

(𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑆)(𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠 + 𝑘𝑇)  𝑘𝐼𝑆𝐶
2              (S  ) 

Substituting eqns (S24) and (S28) into eqn (S1), the EDMR intensity (𝐼EDMR ) can be 

expressed as  

𝐼EDMR = 𝐼on  𝐼off 

=
 𝐼0𝑘𝐸𝑆𝑅𝑘𝑑𝑖𝑠𝑘𝐼𝑆𝐶(𝑘𝑇  𝑘𝑆)(𝑘𝑆 + 𝑘𝐼𝑆𝐶 + 𝑘𝑑𝑖𝑠)

𝐴𝐶
                             (S 9) 

where A and C are given by eqns (S16) and (S17), respectively. 

Using the same parameters, eqn (S29) obtained by distribution in |T0⟩ has the opposite 

sign of the signal in eqn (S15) obtained by population in |S⟩. 

 

 

Scheme S2. Excited-state dynamics and carrier generation process in the VVD film of 

TIPS-Pn. 
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Detailed procedures for quantum mechanical simulation of EDMR spectra 

The EDMR simulation of the kinetic model shown in Scheme S1 is solved by quantum 

mechanics using the stochastic Liouville equation of the density matrices, which is 

given by 

d𝝆𝑒ℎ
d𝑡

= 𝐼0〈|𝜦𝑆|〉  
𝑘𝑑𝑖𝑠
 
(𝝆𝑒ℎ𝜦𝑆 + 𝜦𝑆𝝆𝑒ℎ)  

𝑘𝑑𝑖𝑠
 
(𝝆𝑒ℎ𝜦𝑇 + 𝜦𝑇𝝆𝑒ℎ)

 
𝑘𝑆
 
(𝝆𝑒ℎ𝜦𝑆 + 𝜦𝑆𝝆𝑒ℎ)  

𝑘𝑇
 
(𝝆𝑒ℎ𝜦𝑇 + 𝜦𝑇𝝆𝑒ℎ)

 
𝑖

ℏ
[𝑯𝑒ℎ +𝑯𝑒ℎ

𝑀 𝑊 , 𝝆𝑒ℎ]     

+ (𝑆𝑝𝑖𝑛 𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑒𝑐𝑡𝑠),                        (S3 ) 

𝑯𝑒ℎ = 𝜇 𝑩 ∙ 𝒈𝑒 ∙ 𝑺𝒆 + 𝜇 𝑩 ∙ 𝒈ℎ ∙ 𝑺𝒉             (S3 ) 

𝑯𝑒ℎ
𝑀 𝑊 =  𝜇 𝑩𝟏 ∙ 𝒈𝑒 ∙ 𝑺𝒆co  (𝜔𝑡) +  𝜇 𝑩𝟏 ∙ 𝒈ℎ ∙ 𝑺𝒉co  (𝜔𝑡)       (S3 ) 

Here, 𝝆𝑒ℎis the density matrix of the e-h pair and the first term, 𝐼0〈|𝜦𝑆|〉, on the right 

side denotes the selective population to |S> states from the singlet excited state, |S1>, by 

continuous photoirradiation. 𝜦𝑆 and 𝜦𝑇 are the projection operators to the singlet and 

triplet states in the e-h pair, respectively.  

𝜦𝑆 = |𝑆 >< 𝑆|                (S33) 

and 

𝜦𝑇 = ∑ |𝑇𝑖 >< 𝑇𝑖|         𝑖       (S34)  

Here, 𝑯𝑒ℎ and 𝑯𝑒ℎ
𝑀 𝑊 are the spin Hamiltonian of the e-h pair and that of the interaction 

with the applied microwave, respectively. 𝜇 𝑩 ∙ 𝒈𝑒 ∙ 𝑺𝒆  and 𝜇 𝑩 ∙ 𝒈ℎ ∙ 𝑺𝒉  are the 

Zeeman interactions with the external magnetic field (B).  𝜇 𝑩𝟏 ∙ 𝒈𝑒 ∙ 𝑺𝒆co  (𝜔𝑡) and 

 𝜇 𝑩𝟏 ∙ 𝒈ℎ ∙ 𝑺𝒉co  (𝜔𝑡)  are the interactions between the e-h pair and the oscillating 

microwave with angular frequency (ω). The rate constant of the field-induced radical-

pair intersystem crossing (kISC), which induces S-T0 mixing, was assumed to occur by the 

Δg mechanism. It should be noticed that the density matrix and the Hamiltonians depend 

on θ, ϕ, φ, B, and B1. Herein, θ, ϕ, and φ are the Eularian angles depicting the rotation of 

the g tensors from the molecular frame (X, Y, Z) to the laboratory frame (x, y, z) denoted 

by the external magnetic field (// z-axis) and the microwave field (// x-axis). B and B1 are 

the magnetic flux densities of the external static magnetic field and microwave, 

respectively. In eqns (S30) – (S34), we have chosen the weakly coupled basis 

representation (WC), in which the basis ket vectors are written as |𝑆𝑒 ,𝑚𝑒⟩, |𝑆ℎ,𝑚ℎ⟩. To 

calculate the magnetic resonance effect, we performed laboratory frame-to-frame rotating 

data with the angular frequency (ωt) of the microwave. In the rotating frame, eqn (S30), 

and the density matrix 𝝆𝑒ℎ
𝒓𝒐𝒕 can be obtained as follows:  
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d𝝆𝑒ℎ
𝒓𝒐𝒕

d𝑡
= 𝐼0〈|𝜦𝑆|〉  

𝑘𝑑𝑖𝑠
 
(𝝆𝑒ℎ

𝒓𝒐𝒕𝜦𝑆 + 𝜦𝑆𝝆𝑒ℎ
𝒓𝒐𝒕)  

𝑘𝑑𝑖𝑠
 
(𝝆𝑒ℎ

𝒓𝒐𝒕𝜦𝑇 + 𝜦𝑇𝝆𝑒ℎ
𝒓𝒐𝒕)

 
𝑘𝑆
 
(𝝆𝑒ℎ

𝒓𝒐𝒕𝜦𝑆 + 𝜦𝑆𝝆𝑒ℎ
𝒓𝒐𝒕)  

𝑘𝑇
 
(𝝆𝑒ℎ

𝒓𝒐𝒕𝜦𝑇 + 𝜦𝑇𝝆𝑒ℎ
𝒓𝒐𝒕)

 
𝑖

ℏ
[𝑯𝑒ℎ

𝒓𝒐𝒕 +𝑯𝑒ℎ
𝑀 𝑊 ,𝑟𝑜𝑡, 𝝆𝑒ℎ

𝒓𝒐𝒕]     

+ (𝑆𝑝𝑖𝑛 𝑅𝑒𝑙𝑎𝑥𝑎𝑡𝑖𝑜𝑛 𝐸𝑓𝑓𝑒𝑐𝑡𝑠),                        (S35) 

and the spin Hamiltonians are expressed as follows:  

𝑯𝑒ℎ
𝒓𝒐𝒕 +𝑯𝑒ℎ

𝑴𝑾,𝒓𝒐𝒕 = 𝑨𝑨 + 𝑩𝑩𝑒𝑖𝜔𝑡 + 𝑪𝑪𝑒 𝑖𝜔𝑡 + 𝑫𝑫𝑒2𝑖𝜔𝑡 + 𝑬𝑬𝑒 2𝑖𝜔𝑡                (S36) 

where AA – EE are given by:  

𝑨𝑨 = (𝑔𝑧𝑧
𝑒 𝜇 𝐵0  ℏ𝜔)𝑆𝑧

𝑒 +
𝜇 𝐵 
 
{(𝑔𝑥𝑥

𝑒  𝑖𝑔𝑥𝑦
𝑒 )𝑆+

𝑒 + (𝑔𝑥𝑥
𝑒 + 𝑖𝑔𝑥𝑦

𝑒 )𝑆 
𝑒}+(𝑔𝑧𝑧

ℎ 𝜇 𝐵0

 ℏ𝜔)𝑆𝑧
ℎ +

𝜇 𝐵 
 
{(𝑔𝑥𝑥

ℎ  𝑖𝑔𝑥𝑦
ℎ )𝑆+

ℎ + (𝑔𝑥𝑥
ℎ + 𝑖𝑔𝑥𝑦

ℎ )𝑆 
ℎ}      (S37) 

𝑩𝑩 =
𝜇 𝐵 
 
{(𝑔𝑥𝑧

𝑒  𝑖𝑔𝑦𝑧
𝑒 )𝑆+

𝑒 + (𝑔𝑥𝑧
ℎ  𝑖𝑔𝑦𝑧

ℎ )𝑆+
ℎ}+𝑔𝑥𝑧

𝑒 𝜇 𝐵 𝑆𝑧
𝑒+𝑔𝑥𝑧

ℎ 𝜇 𝐵 𝑆𝑧
ℎ     (S3 ) 

𝑪𝑪 =
𝜇 𝐵 
 
{(𝑔𝑥𝑧

𝑒 + 𝑖𝑔𝑦𝑧
𝑒 )𝑆 

𝑒 + (𝑔𝑥𝑧
ℎ + 𝑖𝑔𝑦𝑧

ℎ )𝑆 
ℎ}+𝑔𝑥𝑧

𝑒 𝜇 𝐵 𝑆𝑧
𝑒+𝑔𝑥𝑧

ℎ 𝜇 𝐵 𝑆𝑧
ℎ      (S39) 

𝑫𝑫 =
𝜇 𝐵 
 
{(𝑔𝑥𝑥

𝑒  𝑖𝑔𝑥𝑦
𝑒 )𝑆+

𝑒 + (𝑔𝑥𝑥
ℎ  𝑖𝑔𝑥𝑦

ℎ )𝑆+
ℎ}       (S  ) 

and 

𝑬𝑬 =
𝜇 𝐵 
 
{(𝑔𝑥𝑥

𝑒 + 𝑖𝑔𝑥𝑦
𝑒 )𝑆 

𝑒 + (𝑔𝑥𝑥
ℎ + 𝑖𝑔𝑥𝑦

ℎ )𝑆 
ℎ}         (S  ) 

In the present e-h pairs, the anisotropy of the g tensors is small. Therefore, only the AA 

term, which is time-independent, will be addressed hereafter because the non-secular 

terms BB, CC, DD, and EE in (S36) can be neglected.  

The rate equation of (S32) was rewritten in the Liouville space as follows:  

d

d𝑡
𝝆𝑒ℎ
𝑳,𝒓𝒐𝒕 = 𝐼0〈|𝜦𝑆|〉  𝑳𝑒ℎ𝝆𝑒ℎ

𝑳,𝒓𝒐𝒕 + 𝜞𝝆𝑒ℎ
𝑳,𝒓𝒐𝒕                    (S42) 

where 

𝝆𝑒ℎ
𝑳,𝒓𝒐𝒕(𝑡) = (

𝜌𝑟𝑜𝑡(𝑡)  
𝜌𝑟𝑜𝑡(𝑡) 2

⋮

) ,      (S43)                        

and 
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𝑳𝑒ℎ =
𝑘𝑑𝑖𝑠
 
(𝜦𝑺𝑬 + 𝑬𝜦𝑺

∗) +
𝑘𝑑𝑖𝑠
 
(𝜦𝑻𝑬 + 𝑬𝜦𝑻

∗ ) +
𝑘𝑆
 
(𝜦𝑺𝑬 + 𝑬𝜦𝑺

∗)

+
𝑘𝑇
 
(𝜦𝑻𝑬 + 𝑬𝜦𝑻

∗ )  
𝑖

ℏ
(𝑨𝑨𝑬  𝑬𝑨𝑨∗)          (S  ) 

Here, 𝜞 is the spin-relaxation matrix and E is the unit matrix. The spin-relaxation 

matrix in the eigenfunction representation of Heh, is expressed by 

𝜞 = 𝜞𝑺𝑳 + 𝜞𝑷𝑴             (S45) 

𝜞𝑺𝑳 =
 

𝑇1

(

 
 
 
 
 
 
 
 

 

𝑍
exp ( 

𝐸1

𝑘𝐵
𝑇)

 
 
 

 

𝑍
exp ( 

𝐸2

𝑘𝐵
𝑇)

 
⋮
⋮

 

𝑍
exp ( 

𝐸4

𝑘𝐵
𝑇))

 
 
 
 
 
 
 
 

⟨𝐸𝑳|  
 

𝑇1

(

 
 
 
 
 
 

   
   
   

   
   
   

⋯ ⋯  
⋯ ⋯  
⋯ ⋯  

   
   
   

   
   
   

⋯ ⋯  
⋯ ⋯  
⋯ ⋯  

⋮ ⋮ ⋮
⋮ ⋮ ⋮
   

⋮ ⋮ ⋮
⋮ ⋮ ⋮
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and 

             𝜞𝑷𝑴 =  
 

𝑇𝑀

(

 
 
 
 
 
 

   
   
   

   
   
   

⋯ ⋯  
⋯ ⋯  
⋯ ⋯  

   
   
   

   
   
   

⋯ ⋯  
⋯ ⋯  
⋯ ⋯  

⋮ ⋮ ⋮
⋮ ⋮ ⋮
   

⋮ ⋮ ⋮
⋮ ⋮ ⋮
   

⋱ ⋯ ⋮
⋯ ⋱ ⋮
⋯ ⋯  )

 
 
 
 
 
 

          (S47) 

Here, 𝜞𝑺𝑳 and  𝜞𝑷𝑴  are the spin-lattice relaxation and the phase-relaxation 

superoperators, respectively, written in the eigenfunction representation. ⟨𝐸𝑳| is 

the row vector representation of E expressed in the Liouville space, which led to 

⟨𝐸𝑳|𝝆𝑒ℎ
𝑳,𝒓𝒐𝒕 = 𝑇𝑟{𝝆𝑒ℎ

𝑳,𝒓𝒐𝒕}. All operators and density matrices of eqn (S42), which are 

written in the WC basis representation, were transformed to those in the 

eigenfunction representation using the unitary transformation matrix, 𝑈𝑊𝐶→𝑒𝑖𝑔𝑒𝑛 

obtained from the eigenfunctions of Heh in the WC basis representation.  

In the steady-state approximation of 𝑑𝝆𝑒ℎ
𝑳,𝒓𝒐𝒕/𝑑𝑡 =  , the solution of the 

density matrix is given by 

𝝆𝑒ℎ
𝐿,𝑟𝑜𝑡 = 𝐼0(𝑳𝑒ℎ  𝜞)

 𝟏〈|𝜦𝑆|〉,       (S48) 

The steady-state density matrix of the e-h pairs 𝝆𝑒ℎ can be obtained directly from 

𝝆𝑒ℎ
𝐿,𝑟𝑜𝑡

. The density matrix and the Hamiltonians depend on θ, ϕ, φ, B, and B1, 
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although they have been omitted in the above equations. In the current study, 

EDMR is caused by the change in the efficiency of charge carrier generation from 

e-h pairs. The efficiency, in which the external magnetic field is applied to the (θ, 

ϕ) direction in the principal axes (X, Y, Z), can be expressed as follows: 

∅(𝜃, 𝜙, 𝜑, 𝐵, 𝐵 ) = (𝑘𝑑𝑖𝑠 𝐼0 )𝑇𝑟{𝝆𝑒ℎ(𝜃, 𝜙, 𝜑, 𝐵, 𝐵 )}  (S49)   

Since the molecules are oriented randomly in the sample, the averaged efficiency is given 

by 

〈∅(𝐵, 𝐵 )〉 =
 

𝑉
∫ ∫ ∫ ∅(𝜃, 𝜙, 𝜑, 𝐵, 𝐵 )  in 𝜃

π

0

2π

0

𝜋

0

d𝜃d𝜙d𝜑                       (S5 ) 

The relative intensity of the EDMR for the photocurrent intensity can be calculated using 

the averaged efficiency as follows: 

𝐼EDMR =
〈∅(𝐵, 𝐵 )〉  〈∅(𝐵,  )〉

〈∅(𝐵,  )〉
              (S5 ) 

which can be used to compare the simulation and the observed EDMR intensity (1.3%), 

as shown in Fig. 5a (inset). The simulation curve in Fig. 5b in the main text was calculated 

using 

𝐼EDMR ∝ 𝐼0〈∅(𝐵, 𝐵 )〉  〈∅(𝐵,  )〉             (S5 ) 

The curve in Fig. 5b was obtained for the maximum intensity of the spectra simulated 

by eqn (52). 

 

Fig. S9 shows the simulated Δg dependence of the EDMR behaviour by the quantum 

mechanical simulation. For slight differences in g-values, the EDMR behaviour was 

almost identical. 

 

Fig. S9. The Δg dependence of the EDMR behaviour. (kS
 = 3.0 × 106 s−1, kT = 1.5 × 107 s−1, 

k0
 = 1.0 × 109 s−1, E/kB

 = 1103 K, and B1
 = 0.050 mT.) 
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Fig. S10 shows the simulated B1 dependence of the EDMR behaviour by the quantum 

mechanical simulation.  

 

Fig. S10. The B1 dependence of the EDMR behaviour. (kS
 = 3.0 × 106 s−1, kT = 1.5 × 107 s−1, 

k0
 = 1.0 × 109 s−1, E/kB

 = 1103 K, ge
 = 2.0023 and gh

 = 2.0025) 

 

 

Photograph and atomic force microscope (AFM) image 

Fig. S11 and Fig. S12 show the photograph and AFM image of TIPS-Pn VVD film, 

respectively. DFM mode was used for the measurement and the measurement 

area was 1 μm x 1 μm (512 pixels in each direction). The scan speed was 0.5 

Hz (one scan line in 2 seconds). AFM measurements show that the film has a 

relative roughness of about 200 nm and is composed of aggregated microcrystals. 

 

 

Fig. S11. Photograph of TIPS-Pn VVD film. 
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Fig. S12. AFM image of TIPS-Pn VVD film. 
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Estimation of reorganization energy by the Marcus theory 

 

The schematic diagram showing the charge-separation process followed by the charge 

hopping transfer is depicted in Fig. S13. Since the Marcus theory is based on the 

perturbation treatment, it is unclear whether the theory can be applicable 

straightforwardly to the charge separation between the adjacent -conjugated molecules 

with the direct overlap of the  orbitals. However, the following discussions are provided 

based on the Marcus theory. According to the Marcus theory,1, 2 the activation energy 

(Δ𝐺†) is related to the reorganization energy 𝜆 and the energy deference (Δ𝐺0) between 

the reactant and product as follows;  

 

Δ𝐺† =
(𝜆 + Δ𝐺0)2

 𝜆
 

 

Therefore, the reorganization energy 𝜆 is given by 

 

𝜆 =
  (Δ𝐺0   Δ𝐺†) ± √(Δ𝐺0   Δ𝐺†)2   (Δ𝐺0)2

 
     

 

When the G0 is almost zero, (Δ𝐺0~ ), it was approximated as follows; 

 

𝜆 =  Δ𝐺† (normal region) or 𝜆 =   (no barrier) 

 

The reorientation energy 𝜆  can be written as the sum of the intramolecular 

reorganization energy 𝜆𝑉 and the environment reorganization energy 𝜆𝑆 as follows;3 

 

𝜆 = 𝜆𝑉 + 𝜆𝑆 

 

Here, we consider the following two cases. One is the case that the activation energy (Δ𝐸) 

estimated by our experiments corresponds to Δ𝐺0
† on the initial charge separation process. 

The other one is the case that the estimated activation energy corresponds to Δ𝐺𝑖
†on the 

charge hopping process. 
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Case 1: Δ𝐸 corresponding to the Δ𝐺0
† of charge separation process 

In the charge separation process (Pn* + Pn → Pn+ + Pn-), ∆G0 = −0.086 eV in the main 

text. Therefore, if the activation energy determined by the temperature dependence of the 

photocurrent corresponds to Δ𝐺0
† (Δ𝐺0

†~Δ𝐸), the intramolecular reorganization energy 

due to the charge separation (S1→ (e - h)), 𝜆0, is given by 𝜆0 = 0.16 eV or 0.046 eV 

(inverted region). In this case, Scheme S1 (Scheme 1 in the main text) is modified as kdis 

is independent of the temperature (kdis = k0) and I0 depends on the temperature;  

 

𝐼0 = 𝐼𝐶exp ( 𝐸/𝑘 𝑇). 

 

Using eqns (2) and (8) in the main text, the temperature dependence of the photocurrent 

and EDMR intensity were simulated as shown in Fig. S14(a) and S14(b), respectively. 

The photocurrent was increased as increasing temperature and the observed behavior of 

the photocurrent can be reproduced. However, the EDMR behavior could not be 

simulated. Therefore, this result shows that Δ𝐸  is not corresponding to the Δ𝐺0
†  of 

charge separation process.  

 

Case 2: Δ𝐸 corresponding to the Δ𝐺†of the charge hopping process  

In the charge hopping process (Pn-Pn+ Pn Pn··· → Pn-Pn Pn+ Pn···→→→ Pn-Pn 

Pn···Pn+), it is expected to ∆G0~  because of the small Coulomb interaction between 

Pn- and Pn+. If the activation energy determined by the temperature dependence of the 

Fig. S13. Energy diagram of excited state, e-h pair and carrier generation process 
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Fig. S14. (a)Photocurrent behavior. (b) EDMR behavior. (k0 = 1.0 × 109 s−1, E/kB = 1000 

K, kdis = kESR = kISC = 1.0 × 107 s−1). 

 

photocurrent corresponds to Δ𝐺† in the Marcus theory, (Δ𝐺 
†~Δ𝐸) , 𝜆 =  Δ𝐺

† =

  3    e  (      ) . The intramolecular reorganization energy due to hole transfer 

(Pn+···Pn → Pn···Pn+) of TIPS-Pn is determined by photoelectron spectroscopy in the 

gas phase as 𝜆𝑉 =      e  .
4 Since the environment reorientation is negligible in the gas 

phase, the deference (𝜆  -𝜆𝑉 ) leads to the environment reorientation energy 𝜆𝑆  in the 

solid or liquid phase. Thus, the reorientation energy in a solid-phase medium was 

estimated as 𝜆𝑆 =    69 e . In the present experiment, the conduction by electron (anion 

species) occurs simultaneously in addition to the hole transfer. Therefore, this 

contribution should be contained into the observed activation energy and 𝜆𝑆. The carrier 

hopping is a multistep process as shown in Fig.S13. In this case, the activation energy is 

not strictly the energy of the carrier generation from the weakly coupled (e - h) pair but 

corresponds to the activation energy of the carrier hopping. 

The result of the EDMR study can be well explained as the activation energy 

corresponding to the carrier hopping process (the carrier generation process) from the 

weakly coupled (e-h) pair. Therefore, the case (2) is more appropriate. 
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