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Microwave power dependence of the linewidth at 80 K

Fig. S1a shows the microwave power dependence of the normalised EDMR spectra. The
EDMR spectra were analysed by eqn (5) in the main text. Fig. S1b presents the microwave
power dependence of the Gaussian and Lorentzian linewidths of the EDMR spectra.
Gaussian and Lorentzian linewidths did not depend on microwave power. From the
linewidth (8B = 0.5 mT) of the Lorentzian line shape, the lower limit of the lifetime (1)
of the weakly coupled e—h pair was estimated to be 1/7=8.6 x 107 s ! (z=1.16 x 107 %5)
using the relationship 0B = h/gfr.

—~

(a) . (b) £ 20 l +
; =)
= 3

A
8 s
G

_ﬁ < 1.0+

3 s
= 5
< =

£ 2 05 / }\ f

L L L L L L L LT:-? 00 L L L L L

320 322 324 326 328 330 332 0 2 4 6 8 10

Magnetic Field / mT (Microwave Power)*1/2 | mW~1/2

Fig. S1. (a) Microwave power dependence of normalised EDMR spectra of the VVD film
of TIPS-Pn under N> atmosphere at 80 K. (b) Microwave power dependence of the

Gaussian and Lorentzian linewidths.

Cyclic voltammogram
The electrochemical property of TIPS-Pn was studied by cyclic voltammetry in CH2Cl»
solution. TIPS-Pn showed a quasi-reversible wave for the redox couple at +0.402 V and

—1.448 V vs., ferrocenium/ferrocene (Fc*/Fc) under identical conditions.
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Fig. S2. Cyclic voltammograms of TIPS-Pn in CH2Cl> containing 0.1 M TBAPFs at room

temperature.

Temperature dependence of amplitude for Gaussian and Lorentzian components

Fig. S3 shows the ratio of the amplitude and integral intensity of the Lorentzian to
Gaussian component. The amplitude and integral intensity of the Lorentzian component
were nearly same as that of the Gaussian component at temperatures below 150 K.
However, the contribution of the Lorentzian component decreased as the temperature

increased and remained constant at approximately 0.5 at temperatures over 200 K.
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Fig. S3. (a) Temperature dependence of amplitude for Gaussian and Lorentzian
components. (b) Temperature dependence of integral intensity for Gaussian and
Lorentzian components. The black and red circles show Lorentzian and Gaussian

amplitudes, respectively (fitting curves using eqn (5) in the main text).

Analytical solutions of EDMR intensity
So-Born Process
The EDMR behaviour could be explained by the carrier generation and deactivation
process of the e-h pair, as illustrated in Scheme 1 (Scheme 1 in the main text). The
intensity of the EDMR signal is defined as:

Iepmr = Ton — Togr (S1)
where Ion and Iy denote the photocurrent intensity in the presence and absence of
microwave irradiation, respectively. The photocurrent (/) is given as the sum of the
product of the population density (p) of the spin sublevels and the dissociative efficiency
(kdis).

I= > kasp (52)

The analytical solution of the EDMR data is derived by solving the simultaneous rate
equations of the singlet e-h pairs !(e-h) and the triplet e-h pairs *(e-h) shown in Scheme
S1. To reproduce the temperature dependence, the dissociative rate constant (kqis) of the
carriers from the spin sublevels of !*(e-h) pairs was assumed to be a thermally activated
process. Thus, the rate constant of carrier generation (kqis) is given by:
kais = koexp(—E/kgT) (S3)
The rate constants ks, kr, kisc, and kgsr are independent of the temperature. The population
density (p) of each spin sublevel under ESR conditions can be obtained by solving eqn
(S4).
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dps"

= lo — Kkiscps™ — kaisps™ — ksps™ + kiscpry = 0

dt
on
deO_k on _ | on _ o on _ | on _ [ HOn 4 | on 4 on —
dt 1scPs 1scPT, ESRPT, disPT, TPT, ESRPT, ESRPT. =
4ot (s4)
dt+ = kESRp%? - kESRP%r1 - kdisp?":l - kTP%f =0
dp’?{l on on on on
pra kgsrpr, — KesrPT. — Kaisp7” — krpr” =0
The analytical solutions of the densities (p{™) are given as follows:
L
- kisckesg + (kais + k) (ks + 3kgsg + kais + kr)
Ps = 1o F+G (S5)
kisc(kgsg + kais + k)
pr, = lo F+G = (S6)
kisckesr
pr, =pr.=lo—rm (87)
where
F = kisc(kais + ks)(kgsg + kais + k1) + 2kgsg (kais + k) (Kisc + kais + ks)  (S8)
G = (kais + kr)(kisc + kais + ks) (kgsg + kais + k1) (S9)

Substituting eqgns (S5) — (S7) into egn (S2), the photocurrent intensity under resonance

conditions is given by

dkisckpsr + (Kais + kr)(2kjsc + 3kgsg + kais + k1)
F+G

The analytical solutions of the photocurrent intensity and the population density (pf

(S10)
ff)

Ion = kaisly

of each spin sublevel under non-resonance conditions can be obtained by substituting
kgsr = 0to eqgns (S5) — (S7):

The analytical solutions of the densities (pf 17 ) are obtained as follows:

PO = kisc + kais + kr (511)
s 0 kisc(kais + ks) + kisc(kgis + k) + (kais + ks)(kais + kr)
k
off ISC
=] S12
Pry = o g Cas & ko) + KrseCeqrs + kp) & Chao &+ ko) (kg T k) 12

prf =p =0 (813)

Substituting egns (S11) — (S13) into eqn (S2), the photocurrent intensity under resonance
conditions is given by
_ 2kisc + kais + kr
Lorr = Kaislo
kisc(kais + ks) + kisc(kais + kr) + (kais + ks) (kais + kr)
In addition, substituting eqns (S10) and (S14) into egn (S1), the EDMR intensity (Igpmgr)
S4
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can be expressed as
2lokgspkaiskisc (ks — kr)

Iepmr = AC : (S15)
where
A = (kr + kais) (ks + kisc + kais) + kisc (ks + kais) (S16)
and
C = kysc(ks + kais) (kpsr + kr + kg;s)

+(ks + kisc + kais) (kr + kais) Bkgsg + kr + kais) (517)
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Scheme S1. Excited-state dynamics and carrier generation model in the VVD film of
TIPS-Pn.

Fig. S4 shows the temperature dependence of kgis. The maximum intensity of EDMR is
obtained when the kqis value is close to those of ks and kt, which was achieved at 200 K

in the current testing system (Fig. 5 in the main text).
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Fig. S4. Temperature dependence of kais (black curve; ko = 1.0 x 10° s™!, E/kg = 1103 K).
ks (blue curve; ks = 3.0 x 10° s7"), and kr (red curve; kr = 1.5 x 107 s!) are temperature

independent rate constants used for the simulation in the main text.

Fig. S5 shows the temperature dependence of the populations (p;) of each spin sublevel.
In the non-resonance condition, there is no population of |7%) and |7-). However, in the
resonant condition, non-zero populations of |7+) and |7-) are generated with a decrease

in |S) population.
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Fig. S5. (a) Temperature dependence of the populations (p;) of each spin sublevel under
resonance condition. (b) Temperature dependence under non-resonance condition. In
these simulations, ks =3.0 x 10°s™!, kr=1.5x10"s ", ko=1.0 x 10’ s™!, E/ks = 1103 K,
kese = 1.0 x 107 s7!, and kisc = 1.0 x 107 s™" were used.

S6



Fig. S6 shows the E/kg and ko dependence of the EDMR peak. Although the temperature
giving the peak position and the temperature width were depended on the kqis parameters

(ko and E), the maximum intensity was independent of those parameters. The peak

temperature was proportional to E/kg, and not to ko.
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Fig. S6. (a) E/ks dependence of the EDMR peak and (b) peak temperature vs. activation
eneray (E/ks). (ks =1.0 x 107 s, kr = 2.0 x 107 s, ko= 1.0 x 10° s, kzsg = 1.0 x 107
s, kisc = 1.0 x 107 s7!). (c) ko dependence of the EDMR behaviour and (d) peak
temperature vs. ko. (ks =1.0 x 10" s™!, kr=1.4 x 10" s!, E/kg = 1000 K, kgsg = 1.0 x 10’
s kisc=1.0x10"s").

Fig. S7 shows the EDMR intensity as a function of the simulated kr. The analytical
solution shows that the sign of the EDRM signal is determined by the difference in the
rate constants, (ks — kt). EDMR was not observed when ks = k1 = 0. The signal is positive
when ks > kr and negative when ks < kt. The EDMR intensity was significantly decreased
when kt was sufficiently higher than kqis. The peak position depended on it when kr was

close to the other transition rate constants (kisc and kgsr).
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Fig. S7. The kr dependence of the EDMR behaviour (a) kt = 10 to 107 s™! and (b) kr =
107 to 103s7L. (c) Peak temperature vs. kr. (d) Maximum intensity vs. kt. (ks = 1.0 x 10’
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s, ko=1.0 x10° s™!, E/kg = 1000 K, kesr = 1.0 x 107 57!, kisc = 1.0 x 107 s71),

Fig. S8 shows the simulated kesr and kisc dependence of the EDMR intensity. The
temperature dependence of the EDMR peak kgsr is similar to that of kisc. The peak
position depended on kgsr and kisc, when kgsr and kisc were close to the other rate
constants. The behaviours were quite similar to those presented in Fig. S7d, but a small
change was observed. The EDMR signal was not observed when kgsg = 0 and/or kisc = 0.

The maximum intensity (negative sign) increased monotonically with an increase in kesr

and kisc.
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Fig. S8. The kesr dependence of the EDMR behaviour. (a) Peak temperature vs. kgsr. (b)
Maximum intensity vs. kesr. (ks =1.0 x 10" s, kr=2.0 x 107 s, ko =1.0 x 10° s™!, E/ks
=1000 K, kisc = 1.0 x 107 s7'), and the kisc dependence of the EDMR behaviour. (c) Peak
temperature vs. kisc. (d) Maximum intensity vs. kisc. (ks = 1.0 x 10" s™!, kr = 2.0 x 10’
s, ko=1.0 x10° s™!, E/kg = 1000 K, kesr = 1.0 x 107 s71),

Analytical solutions of EDMR intensity

To-Born Process

In this study, we assumed the population at |S) from Rehm-Weller’s equation. However,
herein the analytical solution when the population at |7o) is solved. The EDMR behaviour
can be explained by the carrier generation and deactivation process of the e-h pair, as
illustrated in Scheme 2. The intensity of the EDMR signal is defined by egn (S1).

The analytical solution of the EDMR may be derived by solving the simultaneous rate
equations of singlet e-h pairs !(e-h) and triplet e-h pairs (e-h), as shown in Scheme S2.
To reproduce the temperature dependence, the dissociative rate constant (kais) to the
carriers from the spin sublevels of !*(e-h) pairs was assumed to be a thermally activated

process. Thus, the rate constant of carrier generation (kqis) is given by eqn (S3).
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The population density (p) of each spin sublevel under ESR conditions can be obtained

by solving the following simultaneous equations.

dpgn on on on on

dr —Kiscps” — KaisPs" — ksps™ + Kiscpr, =0
dp’Iowgl on on on on on on on
dr Io = kiscps™ — kiscpr, — 2kesrpr, — kaisP1, — krP1, + kEsrPr, + Kesrpr. =0

dp’?:l on on on on
Frake kgsrpT, — KesrPT, — KaisPr, — krp7, =0

dp’?'zl on on on on (518)
Fra kesrp7, + KesrPT. — Kaispr — krpr” =0

The analytical solutions of the densities (p{™) are as follows:

kisc(kgsg + kais + k1)

=]
Ps 0 H+1 (519)
kicr + kgic + ko) (k + kot k
pTo — 10( ISC dis I._Sl)i ;ZSR dis T) (SZO)
kgsg(kisc + kais + ks)
Pr, =Pt = Lo H+1 = : (521)
where
H = (ks + kisc + kais) (kr + kais) Bkgsg + kr + kais) (822)
I = kisc(ks + kais)(kgsg + kr + kais) (823)

Substituting eqgns (S19) —(S21) into eqgn (S2), the photocurrent intensity under resonance
conditions is given by

IOn
kisc(kgsg + kais + kr) + (kisc + kais + ks)(kgsg + kais + kr)+2kgsr(kisc + kais + ks)

(524)
The analytical solutions of the photocurrent intensity and the population density (pf 2 )
of each spin sublevel under non-resonance conditions are obtained by substituting
kgsg = 0to egns (S19) — (S21).
The analytical solutions of the densities (pf 17 ) are as follows:

off _ kisc

Pl = 525
s 0 (kisc + kais + k) (kysc + kais + kr) — kisc (525)
kicr + kgic + k
,O;ff — 10 ISC dis T > (826)
0 (kisc + kais + ks) (kisc + kais + k) — ke

prf =pi =0 (s27)

Substituting eqns (S25) — (S27) into eqn (S2), the photocurrent intensity under resonance
S10



conditions is given by

2kisc + kais + kr
(ks + kais + ks) (kisc + kais + kr) — kfse
Substituting egns (S24) and (S28) into egn (S1), the EDMR intensity (Igpmg) can be

expressed as

Lyrr = kaislo (528)

Iepmr = Ton — ogr
_ 2lokgsgkaiskisc(kr — k) (ks + kisc + kais)
AC
where A4 and C are given by eqns (S16) and (S17), respectively.

(S29)

Using the same parameters, eqn (S29) obtained by distribution in | 7o) has the opposite
sign of the signal in eqn (S15) obtained by population in |S).

Carrier
Ze e 2h+
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4 )
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\_ i J
Kt
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Scheme S2. Excited-state dynamics and carrier generation process in the VVD film of
TIPS-Pn.
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Detailed procedures for quantum mechanical simulation of EDMR spectra

The EDMR simulation of the kinetic model shown in Scheme S1 is solved by quantum
mechanics using the stochastic Liouville equation of the density matrices, which is
given by

dpen ka ka
dte = Io{|Ag]) — Tls (Pends + Agpep) — TLS (PenAr + Arper)

k k
- ?S (Pends + Aspep) — 7T (PenAr + Arpep)

[
- E [Heh + HZiW" peh]

+ (Spin Relaxation Ef fects), (S30)
Hen=ipB go-Se+usB-gn-Sp  (S31)

HYW = 2upB; - g, Secos (wt) + 2ugB1 * gy - Spcos (wt)  (S32)
Here, p.pis the density matrix of the e-h pair and the first term, I,{|Ag]|), on the right
side denotes the selective population to |S$> states from the singlet excited state, |S1>, by
continuous photoirradiation. As and A7 are the projection operators to the singlet and
triplet states in the e-h pair, respectively.

Ag = |§ >< S| (S33)
and

Ap = YT, >< T (S34)
Here, H,, and H."are the spin Hamiltonian of the e-h pair and that of the interaction
with the applied microwave, respectively. ugB-g.-S. and ugB - g, S, are the
Zeeman interactions with the external magnetic field (B). 2ugBq - g. * Secos (wt) and
2upBq - gn - Spcos (wt) are the interactions between the e-h pair and the oscillating
microwave with angular frequency (w). The rate constant of the field-induced radical-
pair intersystem crossing (kisc), which induces S-To mixing, was assumed to occur by the
Ag mechanism. It should be noticed that the density matrix and the Hamiltonians depend
on 6, ¢, p, B, and Bi. Herein, 6, ¢, and ¢ are the Eularian angles depicting the rotation of
the g tensors from the molecular frame (X, Y, Z) to the laboratory frame (x, y, z) denoted
by the external magnetic field (// z-axis) and the microwave field (// x-axis). B and B; are
the magnetic flux densities of the external static magnetic field and microwave,
respectively. In eqns (S30) — (S34), we have chosen the weakly coupled basis
representation (WC), in which the basis ket vectors are written as |S,, m,), |S,, my). To
calculate the magnetic resonance effect, we performed laboratory frame-to-frame rotating
data with the angular frequency (w¢) of the microwave. In the rotating frame, eqn (S30),
and the density matrix p%o¢ can be obtained as follows:

S12



rot

dp ka; ka;
dih = Ip{|Ag]) — == (PZOtAS + Asplt) — = (PZOtAT + Arpey!
- (PZOtAS + Asplt) — = (PZ ‘Ar + Arpih!
_ [Hrot + HM.W.,TOt’ ngt
+ (Spin Relaxation Ef fects), (S35)
and the spin Hamiltonians are expressed as follows:
HT + HIW™° = AA + BBe'®t + CCe™ 't + DDe? %t + EEe %0t (S36)

where AA — EE are given by:

B
AA = (g usBy — hw)sE + 221

{(g8x —i9%,)S¢ + (g%x +ig%y)SE}+ (g% u8B0

ugB . ,
—ho)sp + == {(g — ighy)St + (gix +ighy)SI}  (S37)

ugB
BB = UpDq

{(gxz igf,z)Sf + (Qa}clz - iggz)sil}+gaeczHBB1Sze+gafclzllBB1S£L (538)

uUgBy

CcC = {(ggz + igf}z)Sf + (gafclz + ig}@z)Sﬁ}-l'g;z.uBBlSze+g;clzﬂBBISzh (839)

K .
DD = B : {(gxx lg;y)si + (gxx lgxy)s+} (54‘0)

and

B
EE:#B 1

{(géx +ig%))Se + (g + igh))s™} (S41)

In the present e-h pairs, the anisotropy of the g tensors is small. Therefore, only the AA
term, which is time-independent, will be addressed hereafter because the non-secular
terms BB, CC, DD, and EE in (S36) can be neglected.

The rate equation of (S32) was rewritten in the Liouville space as follows:

d
=Pt = 1o{lAs]) = Lenpen™ + Tpgy (S42)
where
Lrot P ()11
P (O =|pmt ()1, ] (S43)
and

S13



kdis
2

_ kdis

L., —
eh 2

(As®E + EQAL) +

k
(Ar®E + E®A}) + 75 (As®E + E®A})

k i
+ 7T (Ar®E + E®A}) — + (AASE — EQAA’) (S44)

Here, I' is the spin-relaxation matrix and E is the unit matrix. The spin-relaxation
matrix in the eigenfunction representation of Hen, is expressed by
r=rst+re" (S45)

1 Ey
z&xp (= -T)

10 0 0 0 O 0
8 /000000 0
0 00 0 0 O 0
110E o 00000 0
rSL=T—1 Eexp(—éT) (Etl=7|0 0 0 0 1 0 0| (S46)
0 000000 0
%exp(_%T) 0 00 0 0 O 1
B
and
0 00 0 0 O 0
01 0 00O 0
0 01 0 O0 O 0
o 00100 0
rPM=—T—000000 0 (S47)
1o 000 0 1 0
oooooo------o/

Here, I'’‘and '’ are the spin-lattice relaxation and the phase-relaxation
superoperators, respectively, written in the eigenfunction representation. (E;| is
the row vector representation of E expressed in the Liouville space, which led to
(E|pir®t = Tr{p%r°}. All operators and density matrices of eqn (S42), which are
written in the WC basis representation, were transformed to those in the
eigenfunction representation using the unitary transformation matrix, Uy c_eigen
obtained from the eigenfunctions of Hen in the WC basis representation.

In the steady-state approximation of dpg',f"t/dt = 0, the solution of the
density matrix is given by

Pen’" = Io(Len — D)7 As]), (S48)

The steady-state density matrix of the e-h pairs p., can be obtained directly from
pLT°t. The density matrix and the Hamiltonians depend on 6, ¢, ¢, B, and By,

S14



although they have been omitted in the above equations. In the current study,

EDMR is caused by the change in the efficiency of charge carrier generation from

e-h pairs. The efficiency, in which the external magnetic field is applied to the (6,

¢) direction in the principal axes (X, Y, Z), can be expressed as follows:
@(0, ¢, 9, B,By) = (kais/10)Tr{pen(6,$, ¢, B,B1)}  (S49)

Since the molecules are oriented randomly in the sample, the averaged efficiency is given

by

T 2T T
(0(B,B,y)) = %fo L L ?(6, ¢, p,B,B;) sin 6 d8d¢pde (S§50)

The relative intensity of the EDMR for the photocurrent intensity can be calculated using
the averaged efficiency as follows:
[ (@(B, B,)) — (9(B,0))
(8(B,0))
which can be used to compare the simulation and the observed EDMR intensity (1.3%),

as shown in Fig. 5a (inset). The simulation curve in Fig. 5b in the main text was calculated
using

(S51)

Iepmr < [{(@(B, B1)) —(®(B,0)) .  (S52)
The curve in Fig. 5b was obtained for the maximum intensity of the spectra simulated
by eqn (52).

Fig. S9 shows the simulated Ag dependence of the EDMR behaviour by the quantum
mechanical simulation. For slight differences in g-values, the EDMR behaviour was
almost identical.

Ag = 0.0001 (g, = 2.0023, g,, = 2.0024)
Ag = 0.0002 (g, = 2.0023, g, = 2.0025)

Ag = 0.0004 (g, = 2.0023, g, = 2.0037)

Ag = 0.0010 (g, = 2.0023, g, = 2.0033)

o \

o 1005

2 0.990

Relative Intensity at 200K

e Intensity

ati

1.010

Rel

100 200 300
Temperature / K

1,015+ M M
194 196 198 200 202 204 206 208
Temperature / K

Fig. S9. The Ag dependence of the EDMR behaviour. (ks=3.0x 10%s™!, kr=1.5x10"s7!,
ko=1.0x10s™!, E/kg=1103 K, and B1 =0.050 mT.)
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Fig. S10 shows the simulated B; dependence of the EDMR behaviour by the quantum

mechanical simulation.

L B, =0.030 mT

S 0.5

5 10 B, =0.050 mT

Z 15

= 20 B, =0.070 mT

2 2 B, = 0.090 mT
30E_ - - B, =0.100 mT

100 200 300

Temperature / K

Fig. S10. The B dependence of the EDMR behaviour. (ks=3.0 x 10°s™! kr=1.5x10"s7",
ko=1.0x10°s™", E/kn=1103K, ge=2.0023 and gn=2.0025)

Photograph and atomic force microscope (AFM) image

Fig. S11 and Fig. S12 show the photograph and AFM image of TIPS-Pn VVD film,
respectively. DFM mode was used for the measurement and the measurement
area was 1 pm x 1 pm (512 pixels in each direction). The scan speed was 0.5
Hz (one scan line in 2 seconds). AFM measurements show that the film has a
relative roughness of about 200 nm and 1s composed of aggregated microcrystals.

I

3 mm ¢

| 25 mm

Fig. S11. Photograph of TIPS-Pn VVD film.

S16



Raw FOJ21ll

170. 46

[nm]

89.82

0 [nm] 1023.4993

£ Raw J00pl 172.30

[nm]

78.07

0 [nm] 1376.880

Fig. S12. AFM image of TIPS-Pn VVD film.
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Estimation of reorganization energy by the Marcus theory

The schematic diagram showing the charge-separation process followed by the charge
hopping transfer is depicted in Fig. S13. Since the Marcus theory is based on the
perturbation treatment, it is unclear whether the theory can be applicable
straightforwardly to the charge separation between the adjacent n-conjugated molecules
with the direct overlap of the m orbitals. However, the following discussions are provided
based on the Marcus theory. According to the Marcus theory," ? the activation energy
(AGT) is related to the reorganization energy A and the energy deference (AG®) between
the reactant and product as follows;

_(A+A6%?

AGT
42

Therefore, the reorganization energy A is given by

4= —2(AG° — 2AGY) £ /(AG® — 2AG )2 — 4(AG®)?
= > _

When the AG" is almost zero, (AG°~0), it was approximated as follows;
A = 4AGT (normal region) or 2 = 0 (no barrier)

The reorientation energy A can be written as the sum of the intramolecular

reorganization energy A, and the environment reorganization energy Ag as follows;?

A = AV + /15
Here, we consider the following two cases. One is the case that the activation energy (AE)
estimated by our experiments corresponds to AG; on the initial charge separation process.

The other one is the case that the estimated activation energy corresponds to AG; on the

charge hopping process.
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Fig. S13. Energy diagram of excited state, e-h pair and carrier generation process

Case 1: AE corresponding to the AG] of charge separation process

In the charge separation process (Pn* + Pn —» Pn* + Pn’), AG® = —0.086 eV in the main
text. Therefore, if the activation energy determined by the temperature dependence of the
photocurrent corresponds to AG(;r (AGJ ~AFE), the intramolecular reorganization energy
due to the charge separation (S1— (e - h)), 4, is given by A, = 0.16 eV or 0.046 eV
(inverted region). In this case, Scheme S1 (Scheme 1 in the main text) is modified as kais

is independent of the temperature (kais = ko) and /o depends on the temperature;
Iy = Icexp (—E /kgT).

Using eqns (2) and (8) in the main text, the temperature dependence of the photocurrent
and EDMR intensity were simulated as shown in Fig. S14(a) and S14(b), respectively.
The photocurrent was increased as increasing temperature and the observed behavior of
the photocurrent can be reproduced. However, the EDMR behavior could not be
simulated. Therefore, this result shows that AE is not corresponding to the AG] of

charge separation process.

Case 2: AE corresponding to the AGTof the charge hopping process
In the charge hopping process (PnPn" Pn Pn--- — PnPn Pn" Pn-*——— PnPn
Pn---Pn"), it is expected to AG°~0 because of the small Coulomb interaction between

Pn and Pn". If the activation energy determined by the temperature dependence of the
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Fig. S14. (a)Photocurrent behavior. (b) EDMR behavior. (ko = 1.0 x 10° s™!, E/kg = 1000
K, kdis = kesr = kisc = 1.0 x 107 s71).

photocurrent corresponds to AGTin the Marcus theory, (AG;r ~AE), A, = 4AGT =
0.3802 eV (4412 K). The intramolecular reorganization energy due to hole transfer
(Pn"---Pn — Pn---Pn") of TIPS-Pn is determined by photoelectron spectroscopy in the
gas phase as A, = 0.111eV .* Since the environment reorientation is negligible in the gas
phase, the deference (1;-1,) leads to the environment reorientation energy Ag in the
solid or liquid phase. Thus, the reorientation energy in a solid-phase medium was
estimated as Ag = 0.269 eV. In the present experiment, the conduction by electron (anion
species) occurs simultaneously in addition to the hole transfer. Therefore, this
contribution should be contained into the observed activation energy and Ag. The carrier
hopping is a multistep process as shown in Fig.S13. In this case, the activation energy is
not strictly the energy of the carrier generation from the weakly coupled (e - h) pair but
corresponds to the activation energy of the carrier hopping.

The result of the EDMR study can be well explained as the activation energy
corresponding to the carrier hopping process (the carrier generation process) from the

weakly coupled (e-h) pair. Therefore, the case (2) is more appropriate.
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