A Consistent Rate Constant for the Reaction of Nitrogen Dioxide with Oxygen Atom

Yan Li^a, Sandra Javoy^b, Remy Mevel^c, and Xuefei Xu^a

^a Center for Combustion Energy, Department of Energy and Power Engineering, and Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084, China

^b University of Orléans, Department of Chemistry, 1, Rue de Chartres, BP 6759, 45067 Orléans Cedex 02, France.

^c Center for Combustion Energy, School of Vehicle and Mobility, and State Key Laboratory for Automotive Safety and Energy, Tsinghua University, Beijing 100084, China

This supplemental material includes summary tables of the rate constant data we employed to update the rate constant of the reaction $NO_2+O=NO+O_2$. The cartesian coordinates and absolute electronic energies of the optimized structures are then given. Finally, we are proposing a large selection of modeling results for various hydrogen- NO_x mixtures.

1 Rate constant data

Table 1: The calculated rate constants k for the reaction of $NO_2+O=NO+O_2$ in the temperature range of 1000-3000 K.

T(K)	$k (cm^3 mol^{-1} s^{-1})$
200	6.56E + 12
298.15	2.77E + 12
300	2.74E + 12
400	1.94E + 12
500	$1.69E{+}12$
600	1.62E + 12
800	$1.70E{+}12$
1000	$1.93E{+}12$
1060	$2.01E{+}12$
1200	2.22E + 12
1400	$2.57E{+}12$
1600	$2.95E{+}12$
1780	3.32E + 12
1800	3.37E + 12
2000	3.81E + 12
2300	4.52E + 12
2500	$5.01E{+}12$
2700	$5.53E{+}12$
3000	6.32E + 12

Table 2: The rate constants from the experimental data by Estupian et al. $(2001\mathrm{EST/NIC9697\text{-}9703})$ [1].

T(K)	k (cm ³ mol ⁻¹ s ⁻¹)
221	8.74E + 12
230	8.33E + 12
240	$7.93E{+}12$
294	6.43E + 12
296	$6.39E{+}12$
298	$6.35E{+}12$
300	6.31E + 12
339	$5.69E{+}12$
350	5.54E + 12
357	5.46E + 12
360	5.42E + 12
387	5.14E + 12
412	4.93E + 12

413	$4.92E{+}12$
420	4.87E + 12
425	4.83E + 12

2 Molecules geometry and electronic energy

Cartesian coordinates and absolute electronic energies of optimized structures by TPSSh/MG3S.

 NO_2 : -205.15783408 a.u.

Atomic type	Coordinates $(Å)$		
Atomic type	Х	Y	Ζ
N	0.00000000	0.00000000	0.32226700
О	0.00000000	1.10224000	-0.14099200
0	0.00000000	-1.10224000	-0.14099200

O: -75.09350623 a.u.

		Coordinates (Å)	
Atomic type			
	Х	Υ	Z
О	0.00000000	0.00000000	0.00000000

TS (²A"): -280.2537811 a.u.

	Coordinates $(Å)$		
Atomic type			
	Х	Υ	Z
Ν	-0.91641900	0.04937100	0.00000000
О	-0.89045000	-1.13187600	0.00000000
О	1.69231700	0.22113400	0.00000000
0	0.00000000	0.86754200	0.00000000

NO: -129.93885904 a.u.

		Coordinates (Å)	
Atomic type			
	Х	Υ	Ζ
N	0.00000000	0.00000000	-0.61327300
Ο	0.00000000	0.00000000	0.53661400

 ${\rm O}_2:$ -150.37872792 a.u.

		Coordinates (Å)	
Atomic type			
	Х	Υ	Z
0	0.00000000	0.00000000	0.60415000
О	0.00000000	0.00000000	-0.60415000

3 Additional modeling results

3.1 Nitrogen dioxide pyrolysis

 $X_{N2O}=40.1$ ppmv; T=1492 K; P=339 kPa $X_{N2O}=40.1$ ppmv; T=1511 K; P=330 kPa

 $X_{N2O}=20$ ppmv; T=1648 K; P=313 kPa

Figure 1: Experimental and predicted total absorption at 130.5 nm during NO₂ pyrolysis. Model of Glarborg et al. [2].

Figure 2: Experimental and predicted total absorption at 130.5 nm during NO₂ pyrolysis. Model of Nakamura et al. [3].

100

80

100

80

Experimental Zhang Zhang updated

Figure 3: Experimental and predicted total absorption at 130.5 nm during NO_2 pyrolysis. Model of Zhang et al. [4].

Figure 4: Effect of k_1 and k_2 on the total absorption during NO₂-Ar mixtures pyrolysis at different temperature. k_1 corresponds to the rate constant of NO₂(+M)=NO+O(+M). k_2 corresponds to the rate constant of NO₂+O=NO+O₂. Left column: k_1 was perturbed. Right column: k_2 was perturbed. The updated model of Glarborg et al. [2] has been used.

3.2 Hydrogen oxidation by nitrogen dioxide

Figure 5: Experimental[5] and predicted delay-time during the oxidation of H₂ by NO₂. The delay-time is defined as the time needed for the OH^{*} signal to decrease to 50% of the peak value. Mixture: $X_{H2}=0.00222$, $X_{NO2}=0.00392$, $X_{Ar}=0.99386$. T=1535-2003 K; P=105-124 kPa.

Figure 6: Experimental[5] and predicted normalized OH* peak height during the oxidation of H₂ by NO₂. Mixture: $X_{H2}=0.00222$, $X_{NO2}=0.00392$, $X_{Ar}=0.99386$. T=1535-2003 K; P=105-124 kPa.

Figure 7: Experimental[5] and predicted normalized OH^{*} profiles during the oxidation of H₂ by NO₂. Mixture: $X_{H2}=0.00222$, $X_{NO2}=0.00392$, $X_{Ar}=0.99386$. Model of Glarborg et al. [2].

Figure 8: Experimental[5] and predicted normalized OH^{*} profiles during the oxidation of H₂ by NO₂. Mixture: $X_{H2}=0.00222$, $X_{NO2}=0.00392$, $X_{Ar}=0.99386$. Model of Nakamura et al. [3].

Figure 9: Experimental[5] and predicted normalized OH^{*} profiles during the oxidation of H₂ by NO₂. Mixture: X_{H2} =0.00222, X_{NO2} =0.00392, X_{Ar} =0.99386. Model of Zhang et al. [4].

Figure 10: Experimental[6] and predicted delay-time during the oxidation of H₂ by NO₂. The delay-time is defined as the time needed for the H₂O concentration to reach 50% of its maximum value within the experimental test time. In top figures, Mix 1: $X_{H2}=0.00222$, $X_{NO2}=0.00375$, $X_{Ar}=0.99403$. In middle figures, Mix 2: $X_{H2}=0.00444$, $X_{NO2}=0.00178$, $X_{Ar}=0.99378$. In bottom figures, Mix 3: $X_{H2}=0.01778$, $X_{NO2}=0.00168$, $X_{Ar}=0.98054$. T=989-1782 K, P=97-128 kPa. Results obtained with the model of Glarborg et al. [2] and its updated version.

Figure 11: Experimental[6] and predicted delay-time during the oxidation of H₂ by NO₂. The delay-time is defined as the time needed for the H₂O concentration to reach 50% of its maximum value within the experimental test time. In top figures, Mix 1: $X_{H2}=0.00222$, $X_{NO2}=0.00375$, $X_{Ar}=0.99403$. In middle figures, Mix 2: $X_{H2}=0.00444$, $X_{NO2}=0.00178$, $X_{Ar}=0.99378$. In bottom figures, Mix 3: $X_{H2}=0.01778$, $X_{NO2}=0.00168$, $X_{Ar}=0.98054$. T=989-1782 K, P=97-128 kPa. Results obtained with the model of Nakamura et al. [3] and its updated version.

Figure 12: Experimental[6] and predicted delay-time during the oxidation of H₂ by NO₂. The delay-time is defined as the time needed for the H₂O concentration to reach 50% of its maximum value within the experimental test time. In top figures, Mix 1: $X_{H2}=0.00222$, $X_{NO2}=0.00375$, $X_{Ar}=0.99403$. In middle figures, Mix 2: $X_{H2}=0.00444$, $X_{NO2}=0.00178$, $X_{Ar}=0.99378$. In bottom figures, Mix 3: $X_{H2}=0.01778$, $X_{NO2}=0.00168$, $X_{Ar}=0.98054$. T=989-1782 K, P=97-128 kPa. Results obtained with the model of Zhang et al. [4] and its updated version.

Figure 13: Experimental[6] and predicted H₂O profiles during the oxidation of H₂ by NO₂. Mix 1: X_{H2}=0.00222, X_{NO2}=0.00375, X_{Ar}=0.99403; Mix 2: X_{H2}=0.00444, X_{NO2}=0.00178, X_{Ar}=0.99378. Mix 3: X_{H2}=0.01778, X_{NO2}=0.00168, X_{Ar}=0.98054. Model of Glarborg et al. [2].

Figure 14: Experimental[6] and predicted H₂O profiles during the oxidation of H₂ by NO₂. Mix 1: X_{H2}=0.00222, X_{NO2}=0.00375, X_{Ar}=0.99403; Mix 2: X_{H2}=0.00444, X_{NO2}=0.00178, X_{Ar}=0.99378. Mix 3: X_{H2}=0.01778, X_{NO2}=0.00168, X_{Ar}=0.98054. Model of Nakamura et al. [3].

Figure 15: Experimental[6] and predicted H₂O profiles during the oxidation of H₂ by NO₂. Mix 1: X_{H2}=0.00222, X_{NO2}=0.00375, X_{Ar}=0.99403; Mix 2: X_{H2}=0.00444, X_{NO2}=0.00178, X_{Ar}=0.99378. Mix 3: X_{H2}=0.01778, X_{NO2}=0.00168, X_{Ar}=0.98054. Model of Zhang et al. [4].

3.3 Hydrogen oxidation by nitrogen dioxide and oxygen

Figure 16: Experimental[7] and predicted delay-time during the oxidation of H₂ by O₂ with NO₂ addition. The delay-time is defined as the base-line extrapolated maximum slope of the OH* signal. In top figures: $\Phi=0.3$, $X_{NO2}=100$ ppm, $X_{Ar}=0.9799$. In middle figures: $\Phi=1$, $X_{NO2}=100$ ppm, $X_{Ar}=0.9799$. In bottom figures: $\Phi=0.5$, $X_{NO2}=100$ ppm, $X_{Ar}=0.9799$. Results obtained with the models of Glarborg et al. [2], of Nakamura et al. [3], and of Zhang et al. [4] and its updated version.

3.4 Hydrogen oxidation by nitrogen oxides and dioxygen

Figure 17: Experimental [8] and predicted species profiles during the oxidation in a jet-stirred reactor of H_2 by O_2 with NO addition. In top figures: Glarborg et al. [2] and its updated version. In middle figures: Nakamura et al. [3] and its updated version. In bottom figures: Zhang et al. [4] and its updated version. Original models: solid lines. Updated models: dashed lines.

References

- [1] Estupian E., Nicovich J. and Wine P.: A temperature-dependent kinetics study of the important stratospheric reaction $O({}^{3P})+NO_2 \rightarrow O_2+NO$. The Journal of Physical Chemistry A, 2001, vol 105, n° 42, p. 9697–9703.
- [2] Glarborg P., Miller J., Ruscic B. and Klippenstein S.: Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 2018, vol 67, p. 31–68.
- [3] Nakamura H., Hasegawa S. and Tezuka T.: Kinetic modeling of ammonia/air weak flames in a micro flow reactor with a controlled temperature profile. *Combustion and Flame*, 2017, vol 185, p. 16–27.
- [4] Zhang Y., Mathieu O., Petersen E., Bourque G. and Curran H.: Assessing the predictions of a NOx kinetic mechanism on recent hydrogen and syngas experimental data. *Combustion and Flame*, 2017, vol 182, p. 122 – 141.
- [5] Mulvihill C. and Petersen E.: OH* chemiluminescence in the H₂-NO₂ and H₂-N₂O systems. *Combustion and Flame*, 2020, vol 213, p. 291–301.
- [6] Mulvihill C., Mathieu O. and Petersen E.: H₂O time histories in the H₂-NO₂ system for validation of NOx hydrocarbon kinetics mechanisms. *International Journal of Chemical kinetics*, 2019, vol 51, n° 9, p. 669–678.
- [7] Mathieu O., Levacque A. and Petersen E.: Effects of NO2 addition on hydrogen ignition behind reflected shock waves. *Proceedings of the Combustion Institute*, 2013, vol 34, p. 633–640.
- [8] Dagaut P. and Dayma G.: Effects of air contamination on the combustion of hydrogen - Effect of NO and NO₂ addition on hydrogen ignition and oxidation kinetics. *Combustion Science and Technology*, 2006, vol 178, p. 1999–2024.