Supporting information

Studying the mechanism of phase separation in aqueous solutions of globular proteins via molecular dynamics computer simulations

Sandi Brudar, Jure Gujt, Eckhard Spohr, and Barbara Hribar-Lee*

E-mail: barbara.hribar@fkkt.uni-lj.si

Figure S1: Density fluctuations of proteins in the y-axis direction. HEWL (top line) at 42 $\mathrm{mg} / \mathrm{mL}$ (A at $267 \mathrm{~K}, \mathrm{C}$ at 300 K) and $93 \mathrm{mg} / \mathrm{mL}$ (B at 267 K and D at 300 K). T4 WT* (bottom left) at $45 \mathrm{mg} / \mathrm{mL}$ (A at 267 K and C at 300 K) and $90 \mathrm{mg} / \mathrm{mL}$ (B at 267 K and D at 300 K). γ-D crystallin (bottom right) at $100 \mathrm{mg} / \mathrm{mL}$ (A at 300 K and B at 320 K).

Figure S2: Density fluctuations of proteins in the z-axis direction. HEWL (top line) at 42 $\mathrm{mg} / \mathrm{mL}$ (A at $267 \mathrm{~K}, \mathrm{C}$ at 300 K) and $93 \mathrm{mg} / \mathrm{mL}$ (B at 267 K and D at 300 K). T4 WT* (bottom left) at $45 \mathrm{mg} / \mathrm{mL}$ (A at 267 K and C at 300 K) and $90 \mathrm{mg} / \mathrm{mL}$ (B at 267 K and D at 300 K). γ-D crystallin (bottom right) at $100 \mathrm{mg} / \mathrm{mL}$ (A at 300 K and B at 320 K).

Figure S3: The number of protein molecules at different times of the simulation in the vicinity of HEWL molecule at $42 \mathrm{mg} / \mathrm{mL}$ (top left 267 K and top right 300 K) and 93 $\mathrm{mg} / \mathrm{mL}$ (bottom left 267 K and bottom right 300 K)

Figure S4: The number of protein molecules at different times of the simulation in the vicinity of T4 WT* molecule at $45 \mathrm{mg} / \mathrm{mL}$ (top left 267 K and top right 300 K) and 90 $\mathrm{mg} / \mathrm{mL}$ (bottom left 267 K and bottom right 300 K).

Figure S5: The number of protein molecules at different times of the simulation in the vicinity of γ-D crystallin molecule at $100 \mathrm{mg} / \mathrm{mL}$ (left 300 K and right 320 K).

Figure S6: Mean square displacement of proteins at different temperatures. HEWL at 42 $\mathrm{mg} / \mathrm{mL}$ (top left) and $93 \mathrm{mg} / \mathrm{mL}$ (top right). $\mathrm{T} 4 \mathrm{WT}^{*}$ at $45 \mathrm{mg} / \mathrm{mL}$ (middle left) and at 90 $\mathrm{mg} / \mathrm{mL}$ (middle right). γ-D crystallin at $100 \mathrm{mg} / \mathrm{mL}$ (bottom).

Figure S7: The radius of gyration of HEWL (top), T4 WT* lysozyme (middle) and of γ-D crystallin (bottom).

Figure S8: The water oxygen - protein center of mass pair distribution functions for HEWL (top), $\mathrm{T} 4 \mathrm{WT}^{*}$ lysozyme (middle) and γ-D crystallin (bottom).

Figure S9: Solvent accessible surface area (SASA) for HEWL (top), T4 WT* lysozyme (middle) and γ-D crystallin (bottom).

Figure S10: Protein-protein pair distribution functions for HEWL (top), T4 WT* lysozyme (middle) and γ-D crystallin (bottom). Plots are shifted vertically for clarity.

Figure S11: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of HEWL molecules in the solution comprising of $93 \mathrm{mg} \mathrm{mL}^{-1}$ of HEWL at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space

Figure S12: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of HEWL molecules in the solution comprising of $93 \mathrm{mg} \mathrm{mL}{ }^{-1}$ of HEWL at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S13: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of HEWL molecules in the solution comprising of $93 \mathrm{mg} \mathrm{mL}{ }^{-1}$ of HEWL at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S14: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of HEWL molecules in the solution comprising of $42 \mathrm{mg} \mathrm{mL}{ }^{-1}$ of HEWL at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

H highT lowC 14

H highT lowC 48

Figure S15: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of HEWL molecules in the solution comprising of $42 \mathrm{mg} \mathrm{mL}^{-1}$ of HEWL at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S16: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of HEWL molecules in the solution comprising of $93 \mathrm{mg} \mathrm{mL}{ }^{-1}$ of HEWL at 267 K. The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S17: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of HEWL molecules in the solution comprising of $93 \mathrm{mg} \mathrm{mL}^{-1}$ of HEWL at 267 K. The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S18: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of HEWL molecules in the solution comprising of $93 \mathrm{mg} \mathrm{mL}^{-1}$ of HEWL at 267 K. The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S19: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of HEWL molecules in the solution comprising of $42 \mathrm{mg} \mathrm{mL}{ }^{-1}$ of HEWL at 267 K. The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

ThighT highC 14

ThighT highC 26

Figure S20: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of $\mathrm{T} 4 \mathrm{WT}^{*}$ molecules in the solution comprising of $90 \mathrm{mg} \mathrm{mL}{ }^{-1}$ of $\mathrm{T}_{4} \mathrm{WT}^{*}$ at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

ThighT highC 14

ThighT highC 26

Figure S21: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of $\mathrm{T} 4 \mathrm{WT}^{*}$ molecules in the solution comprising of $90 \mathrm{mg} \mathrm{mL}{ }^{-1}$ of $\mathrm{T}_{4} \mathrm{WT}^{*}$ at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

ThighThighC 35

Figure S22: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of $\mathrm{T} 4 \mathrm{WT}^{*}$ molecules in the solution comprising of $90 \mathrm{mg} \mathrm{mL}^{-1}$ of $\mathrm{T} 4 \mathrm{WT}^{*}$ at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S23: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of $\mathrm{T} 4 \mathrm{WT}^{*}$ molecules in the solution comprising of $90 \mathrm{mg} \mathrm{mL}^{-1}$ of $\mathrm{T} 4 \mathrm{WT}^{*}$ at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S24: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of $\mathrm{T} 4 \mathrm{WT}^{*}$ molecules in the solution comprising of $45 \mathrm{mg} \mathrm{mL}{ }^{-1}$ of $\mathrm{T} 4 \mathrm{WT}^{*}$ at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S25: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of T4 WT* molecules in the solution comprising of $45 \mathrm{mg} \mathrm{mL}^{-1}$ of $\mathrm{T} 4 \mathrm{WT}^{*}$ at 300 K . The shortest distance (here in A) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S26: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of $\mathrm{T} 4 \mathrm{WT}^{*}$ molecules in the solution comprising of $90 \mathrm{mg} \mathrm{mL}^{-1}$ of $\mathrm{T} 4 \mathrm{WT}^{*}$ at 267 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

T lowT highc 36

T lowT highC 39

T lowT highC 612

Figure S27: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of T4 WT* molecules in the solution comprising of $90 \mathrm{mg} \mathrm{mL}^{-1}$ of $\mathrm{T} 4 \mathrm{WT}^{*}$ at 267 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S28: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of $\mathrm{T} 4 \mathrm{WT}^{*}$ molecules in the solution comprising of $45 \mathrm{mg} \mathrm{mL}{ }^{-1}$ of $\mathrm{T} 4 \mathrm{WT}^{*}$ at 267 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S29: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of γ-D crystallin molecules in the solution comprising of $100 \mathrm{mg} \mathrm{mL}^{-1}$ of γ-D crystallin at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S30: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of γ-D crystallin molecules in the solution comprising of $100 \mathrm{mg} \mathrm{mL}^{-1}$ of γ-D crystallin at 300 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S31: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of γ-D crystallin molecules in the solution comprising of $100 \mathrm{mg} \mathrm{mL}^{-1}$ of γ-D crystallin at 320 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S32: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of γ-D crystallin molecules in the solution comprising of $100 \mathrm{mg} \mathrm{mL}^{-1}$ of γ-D crystallin at 320 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

Figure S33: Time evolution of residue-residue contacts that appear within $6 \AA$ between different pairs of γ-D crystallin molecules in the solution comprising of $100 \mathrm{mg} \mathrm{mL}^{-1}$ of γ-D crystallin at 320 K . The shortest distance (here in \AA) between the residue pairs is represented with a heat map on the right. Distances above $6 \AA$ are plotted as white space.

