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Supporting text

S1 CRP interpolation of PESs

In principle we use the following grids: r ∈ {0.4, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 1.0, 1.25,

1.5, 1.75, 2.0, 2.3} Å and Z ∈ {0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75.2.0, 2.25, 2.5, 2.75, 3.0, 3.25, 3.5,

3.75, 4.0, 4.25, 4.5, 4.75, 5.0, 5.5, 6.0, 7.0} Å for the 29 two dimensional cuts of the six dimen-

sional molecular PES are used. For the atomic PES a grid denoted by Z ∈ [−1.2 : 9] Å with

dZ = 0.075 Å for Z ≤ 2 Å and dZ = 0.15 Å for Z > 2 Å for all but the reference site was

used. For the atomic reference site a dZ of 0.025 Å was used for Z < 2 Å. Note that in the

case of the atomic PES hard to converge geometries can be discarded and additional points

can be added at random Z to improve the quality of the resulting CRP PES.

S2 Quantum Dynamics

We construct the initial wave function as a product of a rovibrational eigenfunction of H2 in

the gas phase characterized by the initial vibrational quantum number ν, the initial angular

momentum quantum number J and the initial magnetic rotational quantum number mJ , i.e.

Φν,J,mJ (r, θ, φ), and a Gaussian wave packet describing translational motion with the initial

wave vector ~k0 = (kX0 , k
Y
0 , k

Z
0 )T

Ψ( ~Q, t = 0) = Φν,J,mJ (r, θ, φ)ψ(~k0, t0) (S1)

The initial translational motion is then described by the following wave function:

ψ(~k0, t0) = ei(k
X
0 X0+kY0 Y0)

∫ ∞
−∞

β(kZ0 )eik
Z
0 Z0dkZ0 (S2)
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Here, β(kZ0 ) is the initial Gaussian wave packet centered around Z0, which is defined through

the width parameter σ and average momentum k according to:

β(kZ0 ) =
(2σ2

π

)− 1
4
e−σ

2(k−kZ0 )e−i(k−K
Z
0 )Z0 . (S3)

The initial momentum of the wave packet is derived from the minimum and maximum

translational energy in the Z direction of the wave packet (see Emin and Emax in table

S1), as we did not perform QD calculations with initial transverse momentum kX0 and kY0

are taken to be zero for all calculations. The initial wave function is propagated using the

split operator approach with time step ∆t.1 At large Z and r we employ quadratic complex

absorbing potentials,2 which allows us to use short grids by avoiding reflection of the wave

packet at grid boundaries. The scattered wave packet is analysed using the scattering matrix

formalism,3 and subsequently the sticking probability is computed by subtracting the sum

of the scattering probabilities from one.

All parameters describing the grids, optical potentials, time step, the initial wave packet,

the rovibrational basis set, and all the rovibrational states for which calculations have been

carried out, are tabulated in table S1. Note that all rovibrational states that have a Boltz-

mann weight > 0.001, at the nozzle temperature of 2000K, are included.

S3 Methods for determining parameters describing initial-state se-

lected reaction probabilities from associative desorption experi-

ments

S3.1 Method A1

In method A1, it is assumed that the effective barrier heights (E0(ν, J)) can be kept the same

in the description of the sticking and the associative desorption experiments, even though

these are done at quite different temperatures.4,5 The surface temperature dependence of
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Pdeg(E, ν, J) is taken into account by choosing the Wν,J parameters larger in the description

of the associative desorption experiments (done at high Ts, typically > 900 K) than in

the sticking experiments (done at low Ts, usually lower than room temperature), on the

basis of experiments.6,7 Next, the Aν,J parameters are determined assuming that they do

not depend on Ts, by requiring that the measured sticking probabilities can be computed

according to Eqs. 4-9. In this procedure, the A parameters are typically taken either

independent of the initial rovibrational state, or dependent only on ν to obtain a fitting

procedure with a properly constrained number of degrees of freedom. In the latter case,

one might use information regarding the relative values of the Aν,J parameters extracted

from the experiments. Procedure A1 was followed to extract initial-state resolved reaction

probabilities in experiments on H2 and D2 desorbing from Cu(111).4,5,8

A comparison between theory and experiment can then be made in terms of E1/2(ν, J)

parameter values extracted from theory, which represent the incidence energy at which the

computed reaction probability becomes equal to half the experimental saturation value Aν,J ,9

and the experimental values of E0(ν, J). Procedure A1 is illustrated in figure S1a for H2

+ Cu(111) and in figure S1c for D2 + Cu(111). A disadvantage of procedure A1 is that

assuming that E1/2(ν, J) parameters can be compared with E0(ν, J) parameters presumes,

in a way, that the saturation value of the computed sticking probability curve is the same

as that of the measured one, which needs not be the case. This is one of the reasons that, in

comparisons between theory and experiment, the procedure followed usually does not involve

simply fitting computed reaction probabilities to Eq. 11 and then comparing the computed

parameters of Eq. 11 directly to the experimental values. Using Eq. 11 to fit experimental

reaction probabilities is at best a procedure to represent these probabilities over the range of

energies from which they can be extracted with reasonable accuracy using Eq. 10. The error

function fit form is not the most accurate expression to fit reaction probability curves for D2

+ Cu(111),10 and comparison to theory suggests that using this expression does not yield an

accurate extrapolation procedure to energies that exceed the energy range that can be used
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for the experimental extraction procedure (Eq. 10). We also note that the characteristic

energies E1/2(ν, J) will not usually be inflexion points of the theoretical reaction probability

curves.

S3.2 Method B1

In method B1, the experimental sticking probability curve is normalized by equating the

reaction probability at Emax(ν, J) to the computed value:8,11

AB1
ν,J = P exp

deg (Emax(ν, J)) ≡ P exp
th (Emax(ν, J)) (S4)

In procedure B1, the thus extracted reaction probability is simply set equal to Aν,J . Theory is

then compared with experiment by extracting the theoretical characteristic energy E1/2(ν, J)

using:

P exp
th (E1/2(ν, J)) =

1

2
AB1
ν,J (S5)

Method B1 is illustrated in figure S1b for H2 + Cu(111), and in figure S1d for D2 + Cu(111).

Even though Emax(ν, J) will usually not be big enough for Pdeg(Emax(ν, J), ν, J) to essentially

equal the absolute A at high translational energy, the approximate E1/2(ν, J) extracted in this

way will be rather accurate as long as Pdeg(Emax(ν, J), ν, J) ≥ 0.9A, in which case E1/2(ν, J)

will be underestimated by no more than 0.09 Wν,J , with Wν,J typically being 0.2 eV for H2 +

Cu(111)8 and 0.3 eV for H2 + Au(111).11 This condition is met if Emax(ν, J) > E0(ν, J)+0.9

Wν,J . Figure S2 shows that this is not the case for H2 (D2) + Au(111).

S3.3 Method B2

As already mentioned for H2 + Au(111), we found that Emax(ν, J) was typically not large

enough to extract E1/2(ν, J) parameters accurately using method B1. For H2 + Au(111)

we therefore use what we call method B2, which, to our knowledge, has not been used

before. In this case we determine P exp
deg (Emax(ν, J)) from theory, but we then also use the
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measured E0(ν, J) and Wν,J value to determine the Aν,J value at which the experimen-

tal reaction probability curve extracted in this way should saturate according to the fit

(Eq. 11). Then the characteristic theoretical E1/2(ν, J) value is obtained by requiring that

Pdeg(E1/2(ν, J), ν, J) = 0.5AB2
ν,J . This effectively means that we take the Aν,J resulting from

method B1 (AB1
ν,J) and scale it accordingly:

AB2
ν,J =

AB1
ν,J

0.5 + 0.5erf
(
Emax(ν,J)−E0(ν,J)

Wν,J

) (S6)

Saturation values extracted using method B1 and B2 are compared to the experimental

saturation values11 for H2 + Au(111) in figure S3a and for D2 + Au(111) in figure S3b.

Here, we should remember that the experimental saturation values are not on an absolute

scale (they were determined using method A2). As will be shown in figure S3, the A(ν, J)

parameters determined using method B1 and B2 do not vary much with ν and J , as expected

from theory. Also, as expected, they tend not to exceed unity.

S4 The rotational hindering effect as obtained with the Dai-Zhang

LEPS PES

We are aware of one single PES that does reproduce the rotational hindering effect as

observed in the experiment, namely the LEPS PES12 used by Dai and Light 13 for six-

dimensional QD calculations. Dai and Light 13 reported a rotational hindering effect that

is much stronger than we observe in all our data sets. We suspected that strong rotational

hindering might be due to the use of an unconverged basis set or a too large time step used in

the original QD calculations13 or an inaccurate LEPS PES fit, or a combination of the two.

We have recalculated the results reported by Dai and Light 13 which they present in their

figure 1a13 using the same LEPS potential12 but with the QD input parameters of table S1

that are known to yield converged results. Our results are shown in figure S4b. Our con-

verged TDWP calculations yield reaction probabilities that are somewhat lower than those
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reported by Dai and Light 13 , but our results for the ground state do however agree very well

with those published by Somers et al. 14 who used the same potential.

E1/2(ν, J) parameters calculated using method A1 and B1 and using the QD method

for the B86SRP68-DF2 functional and the LEPS PES used by Dai and Light 13 are shown

in comparison to experimental results for (ν = 0) in figure S4c. The calculated E1/2(ν, J)

parameters for the B86SRP68-DF2 functional and the LEPS PES are in remarkably good

agreement for J ≥ 3 for both method A1 and B1. It is clear that the B86SRP68-DF2 func-

tional somewhat underestimates the subtle rotational hindering effect when using procedure

B1. Our converged QD calculations reproduce the original finding13 that using the LEPS

PES yields the rotational hindering trend. However, the results obtained for the LEPS PES

used by Dai and Light 13 overestimate the observed rotational hindering effect when using

either procedure A1 or B1. This leaves the accuracy of the PES as a possible culprit of

the discrepancies observed between the results of our PESs and the results for the LEPS

PES. We are unable to check the fit accuracy of the LEPS PES compared to the underly-

ing electronic structure calculations,15 which however are known to be unconverged.12,15 We

have however checked the fit accuracy of our CRP16 PES for the B86SRP68-DF2 functional

and found that our CRP16 PES is highly accurate with respect to the underlying electronic

structure calculations.

Since we do not observe the strong rotational hindering reported by Dai and Light 13 in

any of the calculations we attempted for the reaction of H2 with Cu(111) with our DFs,

we believe that the large rotational hindering effect yielded by this particular LEPS PES

must originate from inaccuracies still present in the LEPS fit or the underlying electronic

structure calculations being unconverged. The good agreement between the results obtained

using the LEPS PES12 and our best SRP-DF for this system for J ≥ 3 suggests that the

observed rotational hindering is a very subtle effect.
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Supporting figures
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Figure S1: Reaction probability curves as a function of kinetic energy for H2 + Cu(111)
(a,b) and D2 + Cu(111) (c,d). Experimental results8 and QCT results obtained using the
B86SRP68-DF2 SRP-DF are shown. Results for the (ν = 0, J = 1) rovibrational state
are shown with experimental results in black and theoretical results in red, and for the
(ν = 1, J = 1) rovibrational state are shown with experimental results in blue and theoretical
results in green. Vertical dashed lines in the same color as the experimental results show
Emax(ν, J) for the corresponding state. Panels a and c illustrate method A1 to obtain
E1/2(ν, J) parameters and panels b and d method B1. The solid experimental lines use the
measured W (ν, J) parameters8 while the dashed experimental lines use the scaled W (ν, J)
parameters as detailed in the supporting information of Ref.8

S8



0 2 4 6 8
J

0.8

1

1.2

1.4

E
0
(ν

,J
) 

[e
V

]

exp. E
0
(ν,J) + 1/3W

0 2 4 6
J

exp. E
0
(ν,J)

exp. E
max

(ν,J)

0 2 4 6 8 10 12
J

0 2 4 6 8
J

exp. E
0
(ν,J) + 2/3W

H
2

ν = 0 H
2

ν = 1 D
2

ν = 0 D
2

ν = 1

Figure S2: Measured11 E0(ν, J) parameters (black) and Emax(ν, J) parameters (red) for H2

(D2) + Au(111) as a function of J . E0(ν, J) parameters + 1
3

W for (ν = 0) (blue) and
E0(ν, J) parameters + 2

3
W for (ν = 1) (green) are shown as well.

B86SRP68-DF2 
 A exp. tables S6/7 Shuai et al. 

 A’ = A / ( 0.5 + 0.5 * erf( (Eup - E0) / w ) )  

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  1  2  3  4  5  6  7  8  9

ar
b.

J

H2

(a)
ν = 0 A exp. 

ν = 0 AB1 B86SRP68-DF2
ν = 0 AB2 B86SRP68-DF2

ν = 1 A exp. 
ν = 1 AB1 B86SRP68-DF2
ν = 1 AB2 B86SRP68-DF2

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  2  4  6  8  10  12

ar
b.

J

D2

ν = 0 A exp.
ν = 0 AB1 B86SRP68-DF2
ν = 0 AB2 B86SRP68-DF2

ν = 1 A exp.
ν = 1 AB1 B86SRP68-DF2
ν = 1 AB2 B86SRP68-DF2
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obtained using method A2.
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Figure S4: Panel a and b show degeneracy averaged reaction probabilities for (ν = 0, J ∈
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Figure S5: Molecular beam reaction probabilities for D2 reacting on Cu(111). Experimental
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denote the shift along the translational energy axis from the computed reaction probability
to the interpolated experimental reaction probability in kJ/mol.
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Figure S8: Degeneracy averaged reaction probabilities for H2 reacting on Cu(111), obtained
using the B86SRP68-DF2 functional. Solid lined correspond to QD results, dot-dashed lines
correspond to QCT results.
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Figure S10: Rovibrational state populations of H2 desorbing from Au(111) are plotted against
the data for H2 shown in figure 2 of ref.11 Here the calculated normalized experimental results
based on the error function fits have been obtained by performing the integration in Eq. 18
until 5 eV to be consistent with the procedure used in ref.11 Additionally, the calculated
curves have been shifted such that the calculated value for (ν = 0, J = 0) matches with the
(ν = 0, J = 0) result reported in ref.,11 and the calculated results for (ν = 1) have been
shifted by the same amount (+3.0).
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Supporting tables

Table S1: Input parameters for the 6D quantum simulations on the reactive scat-
tering of H2 on Cu(111). All wave packets were propagated until the remaining
norm was less then one percent.

H2 + Cu(111)
0.15 eV - 0.55 eV 0.5 eV - 1.4 eV

(ν = 1, J = 0,mJ = 0) ν = 0 ν = 0 ν = 1 ν = 0 ν = 0 ν = 1
J ∈ [0, 7] J ∈ [8, 11] J ∈ [0, 7] J ∈ [0, 7] J ∈ [8, 11] J ∈ [0, 7]

Zstart (Bohr) -1.0 -1.0 -1.0 -1.0 -1.0 -1.0 -1.0
NZspec 280 252 252 252 224 224 224
NZ 240 198 198 198 192 192 192
∆Z (Bohr) 0.1 0.1 0.1 0.1 0.1 0.1 0.1
Rstart (Bohr) 0.8 0.8 0.8 0.8 0.8 0.8 0.8
NR 64 56 56 56 48 48 48
∆R (Bohr) 0.15 0.15 0.15 0.15 0.15 0.15 0.15
NX 20 20 20 20 20 20 20
NY 20 20 20 20 20 20 20
NJ 36 26 / 25 32 / 31 36 / 35 36 / 35 42 / 41 40 / 39
NmJ 28 26 / 25 32 / 31 28 / 27 28 / 27 40 / 39 32 / 31
Complex absorbing potentials

ZCAP start [a0] 15.2 15.2 15.2 15.2 15.2 15.2 15.2
ZCAP end [a0] 22.90 18.7 18.7 18.7 18.1 18.1 18.1
ZCAP Optimum [eV] 0.03 0.1 0.1 0.1 0.3 0.3 0.3

ZCAPspec start [a0] 19.8 19.8 19.8 19.8 18.8 18.8 18.8

ZCAPspec end [a0] 26.90 24.1 24.1 24.1 21.3 21.3 21.3

ZCAPspec Optimum [eV] 0.05 0.08 0.08 0.08 0.25 0.25 0.25

RCAP start [a0] 4.55 4.55 4.55 4.55 4.55 4.55 4.55
RCAP end [a0] 10.25 9.05 9.05 9.05 7.85 7.85 7.85
RCAP optimum [eV] 0.1 0.1 0.1 0.1 0.25 0.25 0.25
Propagation
∆t [h̄/Eh] 2 2 2 2 2 2 2
tf [h̄/Eh] 45000 20000 20000 20000 13000 13000 13000
Initial wave packet
Emin [eV] 0.055 0.15 0.15 0.15 0.5 0.5 0.5
Emax [eV] 0.45 0.55 0.55 0.55 1.4 1.4 1.4
Z0 [a0] 17.50 17.40 17.40 17.40 16.8 16.8 16.8

Table S2: Rovibrational states taken into account, according to their Boltzmann
weight, in molecular beam simulations for the QCT and QD methods for all H2

(D2) + metal systems.

(ν = 0)Jmax (ν = 1)Jmax (ν = 2)Jmax (ν = 3)Jmax (ν = 4)Jmax

QCT 30 30 30 30 30
QD 11 7 - - -
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Table S3: Molecular beam parameters taken from experiments performed on the
H2 (D2) + Cu(111) system and the D2 + Pt(111) system. The parameters v0,
α, Tn represent the stream velocity of the beam, the width of the beam and the
nozzle temperature at an average translational incidence energy 〈Ei〉. Parameters
were taken from (the supporting information of) refs4,9,18–23

Tn [K] 〈Ei〉 [kJ/mol] v0 [m/s] E0 [eV] α [m/s]
Seeded molecular H2 beams, Auerbach and coworkers4

1740 19.9 3923 0.160 1105
1740 28.1 4892 0.250 1105
1740 38.0 5906 0.364 945
2000 18.2 3857 0.155 995
2000 25.1 4625 0.223 1032
2000 44.1 6431 0.432 886

Seeded molecular D2 beams, Auerbach and coworkers4

2100 35.4 3925 0.322 816
2100 46.4 4595 0.441 782
2100 62.6 5377 0.829 649
2100 69.2 5658 0.860 717
2100 80.1 6132 0.849 830

Pure molecular H2 beams, Auerbach and coworkers4

1435 31.7 5417 0.307 826
1465 32.0 5446 0.310 830
1740 38.0 5906 0.364 945
1855 40.5 6139 0.394 899
2000 44.1 6431 0.432 886
2100 47.4 6674 0.465 913
2300 49.7 6590 0.454 1351

Pure molecular D2 beams, Auerbach and coworkers4

1435 32.8 4014 0.336 299
1790 37.8 4196 0.368 614
1670 38.6 4337 0.393 371
1905 41.4 4374 0.399 685
1975 43.0 4461 0.415 687

Pure molecular H2 beams, Rendulic and coworkers21

1118.07 25.1 3500 0.12794 1996
1331.89 29.9 3555 0.13200 2342
1438.82 32.3 3380 0.11932 2611
1501.19 35.7 3151 0.10371 2819
1581.35 35.5 3219 0.10816 2903
Seeded molecular D2 beams, Juurlink and coworkers22

473 10.0 2004.6 0.083 528.7
673 9.7 2127.9 0.095 297.9
673 13.9 2256.8 0.106 741.8
973 17.6 2484.9 0.129 881.7
673 24.6 3204.7 0.214 766.3
873 27.5 3302.7 0.228 906.7
873 30.1 3449.1 0.248 955.3
873 30.6 3521.1 0.259 909.4
1223 41.9 4015.0 0.337 1181.0
1223 42.8 4096.5 0.350 1151.1
1503 52.8 4039.3 0.340 1744.7

Seeded molecular D2 beams, Groot and coworkers23

300 7.5 1932.3 0.078 193.6
500 12.0 2372.5 0.117 295.1
900 21.1 3090.8 0.199 527.4
1300 30.5 3625.4 0.274 765.6
1700 35.0 3818.9 0.304 908.9
1700 43.9 4051.2 0.342 1261.8
1700 45.0 4268.9 0.380 1097.1
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Table S4: Zero-point energy corrected experimental lattice constants34 in Å
and percentage deviations of computed values from the experimental value. The
UAPE and the SAPE are the unsigned and signed average percentage differences
with the experimental value, respectively.

Cu Ag Au Ni Pd Pt
Å % Å % Å % Å % Å % Å % UAPE SAPE

exp. 3.596 4.062 4.062 3.508 3.876 3.913

SRP4810 3.679 2.30 4.20724 3.56 4.20225 3.44 3.531 0.65 3.985 2.81 3.998 2.17 2.48 2.48

vdW-DF126 3.697 2.80 4.240 4.38 4.245 4.50 3.570 1.76 4.008 3.40 4.032 3.04 3.31 3.31

vdW-DF227 3.742 4.06 4.308 6.05 4.336 6.74 3.607 2.82 4.077 5.18 4.108 4.98 4.97 4.97

BB86SRP68-DF2 3.639 1.19 4.150 2.16 4.166 2.56 3.52828 0.57 3.944 1.75 3.979 1.68 1.65 1.65
SRPsol63-DF2 3.644 1.33 4.157 2.33 4.171 2.68 3.525 0.48 3.949 1.88 3.983 1.78 1.75 1.75

PBEα57-DF229 3.656 1.66 4.176 2.80 4.198 3.34 3.53428 0.74 3.970 2.42 4.01629 2.63 2.27 2.27

optPBE-DF130 3.64931 1.47 4.179 2.88 4.197 3.32 3.972 2.47 4.001 2.24 2.47 2.47

MS-B86bl32 3.583 -0.37 4.087 0.61 4.087 0.61 3.478 -0.86 3.895 0.49 3.908 -0.13 0.51 0.06

PBE33 3.63234 1.00 4.15234 2.21 4.15434 2.26 3.51834 0.28 3.94834 1.85 3.98534 1.84 1.57 1.57

PBEsol35 3.57034 -0.73 4.05834 -0.10 4.08134 0.46 3.46334 -1.29 3.88234 0.15 3.93234 0.48 0.54 -0.17

Table S5: Barrier heights for H2 reacting on Ag(111). For the bridge site φ = 90◦

and θ = 90◦, while for the t2b and fcc sites φ = 0◦ and θ = 90◦. The high
symmetry locations are shown in figure 1b, the t2b geometry refers to the COM
of the molecule being placed on a top site, with the molecular bond pointing to
a bridge site. Barrier heights are in eV, and the barrier positions in Å.

bridge t2b fcc
Eb rb Zb Eb rb Zb Eb rb Zb

SRP4824 1.38 1.27 1.10 1.69 1.57 1.51 1.70 1.67 1.34
B86SRP68-DF2 1.379 1.286 1.125 1.614 1.549 1.510 1.608 1.591 1.354
PBEα57-DF2 1.409 1.292 1.114 1.640 1.555 1.511 1.613 1.586 1.348
MS-PBEl 1.288 1.230 1.116 1.534 1.508 1.493 1.601 1.566 1.314

Table S6: Barrier heights for H2 reacting on Au(111). For the bridge site φ = 90◦

and θ = 90◦, for the t2b site φ = 0◦ and θ = 90◦, and for the t2h site φ = 0◦

and θ = 30◦. The high symmetry locations are shown in figure 1b, the t2b
geometry refers to the COM of the molecule being placed on a top site, with
the molecular bond pointing to a bridge site. Barrier heights are in eV, and the
barrier positions in Å. Additionally the energetic corrugation, ξ, is shown in eV
as well.

bridge t2b t2h φ = 30◦ ξ
Eb rb Zb Eb rb Zb Eb rb Zb

PBE 1.245 1.187 1.096 1.237 1.504 1.468 1.637 1.685 1.549 0.392
SRP4825 1.407 1.180 1.089 1.382 1.493 1.470 1.783 1.689 1.552 0.376
PBEα57-DF2 1.496 1.232 1.071 1.340 1.492 1.469 1.707 1.664 1.558 0.211
B86SRP68-DF2 1.470 1.218 1.091 1.333 1.480 1.470 1.704 1.659 1.556 0.234
MS-PBEl32 1.432 1.144 1.127 1.301 1.433 1.466 1.701 1.578 1.538 0.269
MS-B86bl32 1.481 1.142 1.130 1.355 1.438 1.467 1.753 1.583 1.539 0.272
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Table S7: Barrier heights for H2 reacting on Pt(111). For the bridge site φ = 90◦

and θ = 90◦, for the t2b site φ = 0◦ and θ = 90◦, and for the t2h site φ = 0◦

and θ = 30◦. The high symmetry locations are shown in figure 1b, the t2b
geometry refers to the COM of the molecule being placed on a top site, with
the molecular bond pointing to a bridge site. Barrier heights are in eV, and the
barrier positions in Å.

t2b early t2b late bridge t2h φ = 30◦

Eb rb Zb Eb rb Zb Eb rb Zb Eb rb Zb

SRP48 0.096 0.769 2.256 0.473 0.831 1.628 0.252 0.802 1.860
B86SRP68-DF2 0.050 0.776 2.157 0.505 0.853 1.547 0.246 0.816 1.778
PBEα57-DF229 -0.008 0.769 2.202 -0.055 1.096 1.549 0.275 0.837 1.777 0.200 0.837 1.679
MS-PBEl32 0.145 0.766 2.205 -0.035 1.096 1.529 0.616 0.838 1.599 0.339 0.800 1.840

Table S8: Van der Waals well depths and positions for Cu(111), Ag(111),
Au(111) and Pt(111).

Cu(111) Z [Å] EvdW [meV]
exp. 3.51,36 2.7137 29.5,36 22.237

SRP489 4.38 3.73
vdW-DF1 3.77 52.4
vdW-DF2 3.58 39.0
B86SRP68-DF2 3.74 34.3
PBEα57-DF2 3.34 56.7
SRPsol63-DF2 3.71 41.8
optPBE-DF231 3.52 46.9
Ag(111)
exp.38 1.98 32.5
SRP4824 4.42 2.3
B86SRP68-DF2 3.75 33.3
PBEα57-DF2 3.39 56.1
Au(111)
exp.37 2.2 40.0
SRP4825 4.26 3.0
B86SRP68-DF2 3.62 41.4
PBEα57-DF2 3.30 68.7
Pt(111)
exp. 55,39 7640

SRP48 4.14 5.5
B86SRP68-DF2 3.48 48.0
PBEα57-DF2 3.24 72.4
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Table S9: Mean absolute and mean signed deviations (MADs and MSDs, in
kJ/mol) for the simulated molecular beam experiments presented in section 3.2,
in comparison to the respective experiments.

H2 / D2 + Cu(111) D2 TN = 2100K pure D2 pure H2 H2 Rendulic21 H2 TN = 2000K H2 TN = 1740K
exp.4 MAD MSD MAD MSD MAD MSD MAD MSD MAD MSD MAD MSD
SRP48 3.7 3.7 2.0 2.0 2.8 2.8 0.3 -0.3 1.6 1.6 2.6 2.6
B86SRP68-DF2 1.3 -0.5 1.6 -0.1 0.5 0.3 2.5 -2.5 1.9 -1.9 0.4 0.4
SRPsol63-DF2 2.2 0.9 1.2 1.1 0.8 0.8 2.0 -2.0 0.2 0.2 0.9 0.5
PBEα57-DF229 2.3 0.6 1.3 1.1 1.2 1.2 2.1 -2.1 0.8 0.8 1.7 1.7
optPBE-DF2 2.6 1.4 1.3 1.1 1.6 1.6 1.9 -1.9 0.6 0.6 1.4 1.4
MS-B86bl32 1.7 0.5 1.2 -0.8 0.3 0.2 2.0 -2.0 2.8 -2.8 0.6 0.6

D2 + Pt(111) exp. Luntz41 exp. Cao17

MAD MSD MAD MSD
PBEα57-DF2 1.1 0.19 1.9 -1.1
SRP48 3.5 -3.1 6.8 -6.8
B86SRP68-DF2 3.1 -3.1 5.7 -3.5
MS-PBE32 13.4 -13.4 13.8 -13.8

D2 + Ag(111) exp. Hodgson42

MAD MSD
SRP4824 8.4 -8.4
B86SRP68-DF2 4.6 -4.6
PBEα57-DF229 4.3 -4.3
MS-PBEl32 4.5 -4.5

Table S10: Mean absolute and mean signed deviations of the theoretical E1/2(ν, J)
parameters from the experimental E0(ν, J) values for Cu(111)8 and Au(111).11

Cu(111) Method A1 MAD (eV) H2 MSD (eV) H2 MAD (eV) D2 MSD (eV) D2
total ν = 0 ν = 1 total ν = 0 ν = 1 total ν = 0 ν = 1 total ν = 0 ν = 1

SRP489 0.0434 0.0522 0.0301 0.0373 0.0522 0.0151 0.0254 0.0243 0.0272 -0.0066 -0.0008 -0.0152

MS-B86bl32 0.0274 0.0165 0.0438 -0.0149 0.0044 -0.0438 0.0551 0.0440 0.0717 -0.0551 -0.0440 -0.0717
B86SRP68-DF2 0.0209 0.0142 0.0308 -0.0176 -0.0089 -0.0308 0.0663 0.0640 0.0698 -0.0663 -0.0640 -0.0698
B86SRP68-DF2 QD 0.0231 0.0183 0.0303 -0.0222 -0.0169 -0.0303

Dai and Light 13 QD 0.0091 0.0017
PBEα57-DF2 0.0140 0.0117 0.0174 0.0040 0.0054 0.0018 0.0573 0.0615 0.0509 -0.0573 -0.0616 -0.0509
SRPsol63-DF2 0.0153 0.0136 0.0177 -0.0025 0.0064 -0.0158 0.0510 0.0487 0.0545 -0.0511 -0.0487 -0.0545

optPBE-DF131 0.0146 0.0147 0.0143 0.0054 0.0111 -0.0032 0.0480 0.0481 0.0478 -0.0480 -0.0615 -0.0478

Cu(111) Method B1 MAD (eV) H2 MSD (eV) H2 MAD (eV) D2 MSD (eV) D2
total ν = 0 ν = 1 total ν = 0 ν = 1 total ν = 0 ν = 1 total ν = 0 ν = 1

SRP489 0.0409 0.0317 0.0549 -0.0409 -0.0317 -0.0549 0.0336 0.0252 0.0336 -0.0332 -0.0246 -0.0460

MS-B86bl32 0.0826 0.0664 0.1067 -0.0826 -0.0664 -0.1068 0.0712 0.0567 0.0929 -0.0712 -0.0567 -0.0929
B86SRP68-DF2 0.0843 0.0756 0.0974 -0.0843 -0.0756 -0.0974 0.0785 0.0709 0.0898 -0.0785 -0.0709 -0.0897
B86SRP68-DF2 QD 0.0846 0.0812 0.0897 -0.0845 -0.0813 -0.0897

Dai and Light 13 QD 0.0703 -0.0703
PBEα57-DF2 0.0676 0.0647 0.0718 -0.0676 -0.0648 -0.0718 0.0674 0.0642 0.0723 -0.0674 -0.0642 -0.0723
SRPsol63-DF2 0.0738 0.0660 0.0855 -0.0738 -0.0660 -0.0855 0.0682 0.0613 0.0785 -0.0682 -0.0613 -0.0785

optPBE-DF131 0.0688 0.0635 0.0768 -0.0688 -0.0635 -0.0767 0.0642 0.0583 0.0729 -0.0642 -0.0583 -0.0729

Au(111) Method B1 MAD (eV) H2 MSD (eV) H2 MAD (eV) D2 MSD (eV) D2
total ν = 0 ν = 1 total ν = 0 ν = 1 total ν = 0 ν = 1 total ν = 0 ν = 1

PBE 0.1025 0.1333 0.0718 0.1025 0.1333 0.0718 0.0955 0.1178 0.0734 0.0955 0.1176 0.0733

SRP4825 0.0309 0.0468 0.0151 0.0158 0.0468 -0.0151 0.0229 0.0325 0.0133 0.0094 0.0321 -0.0131
PBEα57-DF2 0.0189 0.0241 0.0136 0.0026 0.0177 -0.0125 0.0187 0.0246 0.0127 0.0125 0.0246 0.0005
B86SRP68-DF2 0.0270 0.0457 0.0083 0.0217 0.0457 -0.0022 0.0190 0.0275 0.0105 0.0113 0.0275 -0.0050

optPBE-DF125 0.0260 0.0225 0.0259 -0.0044 0.0206 -0.0296 0.0212 0.0116 0.0309 -0.0143 0.0023 -0.0307

MS-PBEl32 0.0329 0.0393 0.0264 0.0028 0.0320 -0.0264 0.0270 0.0116 0.0105 0.0212 0.0435 -0.0009

Au(111) Method B2 MAD (eV) H2 MSD (eV) H2 MAD (eV) D2 MSD (eV) D2
total ν = 0 ν = 1 total ν = 0 ν = 1 total ν = 0 ν = 1 total ν = 0 ν = 1

PBE 0.0464 0.0471 0.0457 -0.0463 -0.0470 -0.0457 0.0579 0.0551 0.0607 -0.0579 -0.0551 -0.0607

SRP4825 0.0891 0.0774 0.1008 -0.0891 -0.0774 -0.1008 0.0948 0.0856 0.1041 -0.0948 -0.0856 -0.1041
PBEα57-DF2 0.1050 0.1143 0.0958 -0.1050 -0.1143 -0.0958 0.0957 0.0905 0.1009 -0.0957 -0.0905 -0.1009
B86SRP68-DF2 0.0854 0.0797 0.0911 -0.0854 -0.0797 -0.0911 0.0955 0.0888 0.1015 -0.0951 -0.0888 -0.1015

optPBE-DF125 0.0959 0.0860 0.1058 -0.0959 -0.0860 -0.1058 0.1037 0.0952 0.1123 -0.1037 -0.0952 -0.1123

MS-PBEl32 0.1057 0.1043 0.1072 -0.1057 -0.1043 -0.1072 0.0918 0.0836 0.1000 -0.0835 -0.0551 -0.1120

S20



References

(1) Feit, M.; Fleck Jr, J.; Steiger, A. Solution of the Schrödinger equation by a spectral

method. J. Comput. Phys. 1982, 47, 412–433.

(2) Vibok, A.; Balint-Kurti, G. Parametrization of complex absorbing potentials for time-

dependent quantum dynamics. J. Phys. Chem. 1992, 96, 8712–8719.

(3) Balint-Kurti, G. G.; Dixon, R. N.; Marston, C. C. Grid methods for solving the

Schrödinger equation and time dependent quantum dynamics of molecular photofrag-

mentation and reactive scattering processes. Int. Rev. Phys. Chem. 1992, 11, 317–344.

(4) Michelsen, H.; Rettner, C.; Auerbach, D.; Zare, R. Effect of rotation on the translational

and vibrational energy dependence of the dissociative adsorption of D2 on Cu(111). J.

Chem. Phys. 1993, 98, 8294–8307.

(5) Rettner, C.; Michelsen, H.; Auerbach, D. Quantum-state-specific dynamics of the dis-

sociative adsorption and associative desorption of H2 at a Cu(111) surface. J. Chem.

Phys. 1995, 102, 4625–4641.

(6) Michelsen, H.; Rettner, C.; Auerbach, D. On the influence of surface temperature on

adsorption and desorption in the D2/Cu(111) system. Surf. Sci. 1992, 272, 65–72.

(7) Rettner, C.; Auerbach, D.; Michelsen, H. Dynamical studies of the interaction of D2

with a Cu(111) surface. J. Vac. Sci. Technol. A 1992, 10, 2282–2286.

(8) Kaufmann, S.; Shuai, Q.; Auerbach, D. J.; Schwarzer, D.; Wodtke, A. M. Associative

desorption of hydrogen isotopologues from copper surfaces: characterization of two

reaction mechanisms. J. Chem. Phys. 2018, 148, 194703.

(9) Dı́az, C.; Pijper, E.; Olsen, R.; Busnengo, H.; Auerbach, D.; Kroes, G. Chemically

accurate simulation of a prototypical surface reaction: H2 dissociation on Cu(111).

Science 2009, 326, 832–834.

S21



(10) Nattino, F.; Genova, A.; Guijt, M.; Muzas, A. S.; Dı́az, C.; Auerbach, D. J.; Kroes, G.-

J. Dissociation and recombination of D2 on Cu(111): Ab initio molecular dynamics

calculations and improved analysis of desorption experiments. J. Chem. Phys. 2014,

141, 124705.

(11) Shuai, Q.; Kaufmann, S.; Auerbach, D. J.; Schwarzer, D.; Wodtke, A. M. Evidence for

electron–hole pair excitation in the associative desorption of H2 and D2 from Au(111).

J. Phys. Chem. Lett. 2017, 8, 1657–1663.

(12) Dai, J.; Zhang, J. Z. Quantum adsorption dynamics of a diatomic molecule on surface:

Four-dimensional fixed-site model for H2 on Cu (111). The Journal of chemical physics

1995, 102, 6280–6289.

(13) Dai, J.; Light, J. C. The steric effect in a full dimensional quantum dynamics simulation

for the dissociative adsorption of H2 on Cu(111). J. Chem. Phys. 1998, 108, 7816–7820.

(14) Somers, M.; Kingma, S.; Pijper, E.; Kroes, G.; Lemoine, D. Six-dimensional quantum

dynamics of scattering of (ν = 0, j= 0) H2 and D2 from Cu(111): test of two LEPS

potential energy surfaces. Chem. Phys. Lett. 2002, 360, 390–399.

(15) Hammer, B.; Scheffler, M.; Jacobsen, K. W.; Nørskov, J. K. Multidimensional potential

energy surface for H2 dissociation over Cu(111). Phys. Rev. Lett. 1994, 73, 1400.

(16) Busnengo, H.; Salin, A.; Dong, W. Representation of the 6D potential energy surface

for a diatomic molecule near a solid surface. J. Chem. Phys. 2000, 112, 7641–7651.
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(26) Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals

density functional for general geometries. Phys. rev. lett. 2004, 92, 246401.
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