## Supplementary Information

## An in Silico Investigation of Binding Modes and Pathway of APTO-253 on c-KIT G-Quadruplex DNA

Saikat Pal and Sandip Paul\*

Department of Chemistry, Indian Institute of Technology, Guwahati Assam, India-781039 (Dated: November 30, 2020)

| Disease Type | Cell Lines | ${ m IC}_{50}(\mu{ m M})$ Mean |
|--------------|------------|--------------------------------|
| MCL          | Jeko-1     | 0.057                          |
| MCL          | GRANTA-519 | 0.082                          |
| Burkitt's    | Raji       | 0.1                            |
| AML          | MOLM-13    | 0.14                           |
| MCL          | Mino       | 0.23                           |
| AML          | MV4-11     | 0.24                           |
| AML          | EOL-1      | 0.3                            |
| AML          | THP1       | 0.34                           |
| Burkitt's    | Ramos      | 0.35                           |
| AML          | HL-60      | 0.46                           |
| AML          | SKM-1      | 0.48                           |
| AML          | KG-1       | 0.51                           |
| DLBCL        | SUDHL-6    | 0.51                           |
| T-ALL        | Jurkat     | 0.52                           |
| AML          | Nomo-1     | 1.45                           |
| AML          | HEL92.1.7  | 1.75                           |

TABLE S1: APTO-253  $\mathrm{IC}_{50}$  values in leukemia and lymphoma cell lines.



FIG. S1: Contact number between APTO-253 and c-KIT quadruplex DNA for different systems.



FIG. S2: Contact number between APTO-253 and c-KIT quadruplex DNA for different systems.

OL15-Top (a)



FIG. S3: (a) Snapshots representations of the complex formation of the c-KIT quadruplex DNA with time progress, (b) taking into account all heavy atoms of c-KIT G-quadruplex DNA, pairwise 2D-RMSDs of different systems, and (c) Root-mean-square fluctuations (RMSFs) of all heavy atom of c-KIT G-quadruplex DNA for different systems.



FIG. S4: (a) Time progression of the root-mean-square deviations (RMSDs) of all heavy atom of c-KIT G-quadruplex DNA, (b) number of hydrogen bonds for tetrads, (c) the distance between center of masses of c-KIT G-quadruplex DNA and APTO-253, and the distance between the two K<sup>+</sup> central cations, and (d) the binding free energy of complex formation of APTO-253 ligand and c-KIT G-quadruplex DNA with time progression.





FIG. S5: (a) Snapshots representations of the complex formation of the c-KIT quadruplex DNA with time progress, (b) taking into account all heavy atoms of c-KIT G-quadruplex DNA, pairwise 2D-RMSDs of different systems, and (c) Root-mean-square fluctuations (RMSFs) of all heavy atom of c-KIT G-quadruplex DNA for different systems.



FIG. S6: (a) Time progression of the root-mean-square deviations (RMSDs) of all heavy atom of c-KIT G-quadruplex DNA, (b) number of hydrogen bonds for tetrads, (c) the distance between center of masses of c-KIT G-quadruplex DNA and APTO-253, and the distance between the two K<sup>+</sup> central cations, and (d) the binding free energy of complex formation of APTO-253 ligand and c-KIT G-quadruplex DNA with time progression.



FIG. S7: (a) Snapshots representations of the complex formation of the c-KIT quadruplex DNA with time progress, (b) taking into account all heavy atoms of c-KIT G-quadruplex DNA, pairwise 2D-RMSDs of different systems, and (c) Root-mean-square fluctuations (RMSFs) of all heavy atom of c-KIT G-quadruplex DNA for different systems.



FIG. S8: (a) Time progression of the root-mean-square deviations (RMSDs) of all heavy atom of c-KIT G-quadruplex DNA, (b) number of hydrogen bonds for tetrads, (c) the distance between center of masses of c-KIT G-quadruplex DNA and APTO-253, and the distance between the two K<sup>+</sup> central cations, and (d) the binding free energy of complex formation of APTO-253 ligand and c-KIT G-quadruplex DNA with time progression.



FIG. S9: (a) Snapshots representations of the complex formation of the c-KIT quadruplex DNA with time progress, (b) taking into account all heavy atoms of c-KIT G-quadruplex DNA, pairwise 2D-RMSDs of different systems, and (c) Root-mean-square fluctuations (RMSFs) of all heavy atom of c-KIT G-quadruplex DNA for different systems.



FIG. S10: (a) Time progression of the root-mean-square deviations (RMSDs) of all heavy atom of c-KIT G-quadruplex DNA, (b) number of hydrogen bonds for tetrads, (c) the distance between center of masses of c-KIT G-quadruplex DNA and APTO-253, and the distance between the two  $K^+$  central cations, and (d) the binding free energy of complex formation of APTO-253 ligand and c-KIT G-quadruplex DNA with time progression.



FIG. S11: Stacking probability with respect to distance and angle between the corresponding planes.



FIG. S12: Stacking probability with respect to distance and angle between the corresponding planes.



FIG. S13: Stacking probability with respect to distance and angle between the corresponding planes.

\* Electronic address: sandipp@iitg.ac.in