Supporting Information for

Synthesis and Characterization of *N*-Heterocyclic Carbene-M \cdots OEt₂ Complexes (M = Cu, Ag, Au). Analysis of Solvated Auxiliary-Ligand Free [(NHC)M]⁺ Species

Alvaro Muñoz-Castro,^{a,*} Guocang Wang,^b Tharun Teja Ponduru,^b H. V. Rasika Dias^{b,*}

^aGrupo de Química Inorgánica y Materiales Moleculares, Facultad de Ingeniería, Universidad Autonoma de Chile, El Llano Subercaseaux 2801, Santiago, Chile.

^bDepartment of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, Texas 76019, USA

Content

Experimental procedures	Page 2
Table S1. Selected bond distances (Å) and angles (°) of NHC supported coinage metal water adducts	. Page 6
References	Page 7
Figure S1. Molecular structures of [(SIPr)Cu(OEt ₂)][SbF ₆]	Page 8
Figure S2. Molecules in the asymmetric unit of [(SIPr)Cu(OEt ₂)][SbF ₆].	.Page 9
Table S2. Crystal data and structure refinement for [(SIPr)Cu(OEt ₂)][SbF ₆]•2CH ₂ Cl ₂	Page 10
Figure S3. Molecular structures of [(SIPr)Ag(OEt ₂)][SbF ₆]	Page 11
Figure S4. Molecules in the asymmetric unit of [(SIPr)Ag(OEt ₂)][SbF ₆].	Page 12
Table S3. Crystal data and structure refinement for [(SIPr)Ag(OEt ₂)][SbF ₆]•2CH ₂ Cl ₂	Page 13
Figure S5. Molecular structures of [(^{Et2} CAAC)Ag(OEt ₂)][SbF ₆]	Page 14
Figure S6. Molecules in the asymmetric unit of [(^{Et2} CAAC)Ag(OEt ₂)][SbF ₆]	.Page 15
Table S4. Crystal data and structure refinement for [(^{Et2} CAAC)Ag(OEt ₂)][SbF ₆]	Page 16
Figure S7. Molecular structures of [(^{Et2} CAAC)Au(OEt ₂)][SbF ₆]	Page 17
Figure S8. Asymmetric unit of [(^{Et2} CAAC)Au(OEt ₂)][SbF ₆]	.Page 18
Table S5. Crystal data and structure refinement for [(^{Et2} CAAC)Au(OEt ₂)][SbF ₆]	Page 19
Figure S9. Molecular structures of [(SIPr)Cu(OH ₂)][SbF ₆]	Page 20
Table S6. Crystal data and structure refinement for [(SIPr)Cu(OH ₂)][SbF ₆]•0.5(H ₂ O)	.Page 21
Figure S10. Molecular structures of $[(^{Et2}CAAC)Cu(OH_2)][SbF_6]$	Page 22
Table S7. Crystal data and structure refinement for [(^{Et2} CAAC)Cu(OH ₂)][SbF ₆]	Page 23
Figure S11. Molecular structures of [(^{Et2} CAAC)Au(OH ₂)][SbF ₆]	Page 24
Table S8. Crystal data and structure refinement for [(^{Et2} CAAC)Au(OH ₂)][SbF ₆]	.Page 25
Table S9. Energy decomposition analysis for for [(NHC)M] ⁺ OEt ₂ interaction	. Page 26
Table S10. Energy decomposition analysis for for [(NHC)M] ⁺ OH ₂ interaction	.Page 26
Table S11. Energy decomposition analysis for $[(SIPr)I]^+ \cdots OEt_2(13)$ and $[(SIPr)I]^+ \cdots OH_2(14)$ interaction.	.Page 27
Figure S11. Relevant charge-transfer related to the $[(NHC)M]^+ \cdots OEt_2$ interaction	.Page 27
Table S12. Energy decomposition analysis for imidazole-2-thione derivative of 1 for interaction toward, OI	Et_2, OH_2
and SH ₂ solvent molecules. Values in kcal·mol ⁻¹	.Page 27
Figure S12. Optimized structures for imidazole-2-thione derivative of 1 for interaction toward, OEt ₂ , OH ₂ a	and SH ₂
solvent molecules, denoting the lesser interaction	.Page 28
Table S13. Coordinates for optimized structures, in a multipleXYZ format	Page 28

Experimental Procedures:

All manipulations were carried out under an atmosphere of purified nitrogen using standard Schlenk techniques or in a MBRAUN LABMaster glovebox equipped with a -10 °C refrigerator. Solvents were purchased from commercial sources, and purified by conventional methods prior to use. Glassware was oven-dried at 150°C overnight. The NMR spectra were recorded at the room temperature on a JEOL Eclipse 500 spectrometer (¹H: 500.16 MHz, ¹³C: 125.77 MHz and 470.62 MHz) and a JEOL Eclipse 300 spectrometer (¹⁹F: 282.78 MHz). Chemical shifts for ¹H and ¹³C spectra are referenced to the solvent peak (¹H; CD₂Cl₂, δ 5.32, ¹³C; CD₂Cl₂, δ 53.84, CDCl₃, δ 7.26, ¹³C; CDCl₃, δ 77.16, ¹H; D₆-dmso, δ 2.50, ¹³C; D₆-dmso, δ 39.52.) IR spectra were collected at room temperature on a Shimadzu IRPrestige-21 FTIR containing an ATR attachment at 2 cm⁻¹ resolution. Elemental analyses were performed at Intertek USA, Whitehouse, NJ. Deuterated solvents were purchased from Acros Organics and Cambridge Isotope Laboratories, respectively. Deuterated solvents were purchased from Acros Organics and Cambridge Isotope Laboratories, respectively. (SIPr)CuCl,¹ (SIPr)AgCl,² (SIPr)AuCl,³ (^{Et2}CAAC)CuCl,⁴ (^{Et2}CAAC)AgCl,⁵ (^{Et2}CAAC)AuCl⁴ were prepared according to literature procedures.

[(SIPr)Cu(OEt₂)][SbF₆] (1): A mixture of (SIPr)CuCl (0.120 g, 0.245 mmol) and AgSbF₆ (0.084 g, 0.245 mmol) in a mixed solvent dichloromethane/diethylether (5:1; 12 mL) was stirred for 45 minutes at 0 °C. The resulting mixture was filtered through a pad of Celite *via* canula and the filtrate was concentrated to ~3 mL under reduced pressure. The concentrated solution was layered with hexane (3 mL) and kept in refrigerator at -20 °C to obtain colorless crystals of [(SIPr)Cu(OEt₂)][SbF₆] (78 % yield). ¹H NMR (CD₂Cl₂, 500.16 MHz, 298 K): δ 7.45 (t, 2H, ³*J*_{HH} = 8 Hz, C₆*H*₃), 7.30 (d, 4H, ³*J*_{HH} = 8 Hz, C₆*H*₃), 4.18 (s, 4H, C*H*₂), 3.48 (q, 4H, ³*J*_{HH} = 6.9

Hz, OC<u>H</u>₂CH₃), 3.05 (sept, 4H, ${}^{3}J_{HH} = 6.9$ Hz, C<u>H</u>(CH₃)₂), 1.37 (d, 12H, ${}^{3}J_{HH} = 6.9$ Hz, CH(C<u>H</u>₃)₂), 1.30 (d, 12H, ${}^{3}J_{HH} = 6.9$ Hz, CH(C<u>H</u>₃)₂), 0.51 (t, 6H, OCH₂C<u>H</u>₃). ${}^{13}C{}^{1}H$ NMR (CD₂Cl₂, 125.77 MHz, 298 K): δ 199.7 (Cu–N<u>C</u>N), 147.2, 134.3, 130.8, 125.2, 72.4 (br), 54.3, 29.2, 25.7, 24.1, 14.9. Anal. Calcd. for C₃₁H₄₈N₂OF₆CuSb: C, 48.73; H, 6.33; N, 3.67. Found: C, 48.26; H, 6.27; N, 3.20.

[(**SIPr**)**Ag**(**OEt**₂)][**SbF**₆] (2): A mixture of (SIPr)AgCl (0.180 g, 0.336 mmol) and AgSbF₆ (0.128 g, 0.372 mmol) in a mixed solvent dichloromethane/diethylether (5:1; 12 mL) was stirred for 45 minutes at 0 °C. The resulting mixture was filtered through a pad of Celite *via* canula and the filtrate was concentrated to ~3 mL under reduced pressure. The concentrated solution was layered with hexane (3 mL) and kept in refrigerator at -20 °C to obtain colorless crystals of [(SIPr)Ag(OEt₂)][SbF₆] (0.190 g, 70% yield). ¹H NMR (CD₂Cl₂, 500.16 MHz, 298 K): δ 7.46 (t, 2H, ³*J*_{HH} = 8 Hz, C₆<u>H</u>₃), 7.30 (d, 4H, ³*J*_{HH} = 8 Hz, C₆<u>H</u>₃), 4.24 (s, 4H, C<u>H</u>₂), 3.47 (q, 4H, ³*J*_{HH} = 6.9 Hz, OC<u>H</u>₂CH₃), 3.06 (sept, 4H, ³*J*_{HH} = 6.9 Hz, C<u>H</u>(CH₃)₂), 1.37 (d, 12H, ³*J*_{HH} = 6.9 Hz, CH(C<u>H</u>₃)₂), 1.29 (d, 12H, ³*J*_{HH} = 6.9 Hz, CH(C<u>H</u>₃)₂), 0.76 (t, 6H, OCH₂C<u>H</u>₃). ¹³C{¹H} NMR (CD₂Cl₂, 125.77 MHz, 298 K): δ 146.9, 134.2, 130.3, 124.8, 69.3 (br), 53.9, 28.8, 25.4, 23.8, 15.5. Anal. Calcd. for C₃₁H₄₈N₂OF₆AgSb: C, 46.06; H, 5.99; N, 3.47. Found: C, 45.60; H, 5.99; N, 3.01.

[(Et2 CAAC)M(OEt₂)][SbF₆]: A mixture of (Et2 CAAC)MCl [M= Cu (124 mg), Ag (137 mg), Au (164 mg); 0.3 mmol] and AgSbF₆ (103 mg, 0.3 mmol) in a mixed solvent dichloromethane/diethyl ether (1:1; 6 mL) was stirred for 45 minutes at room temperature. The resulting mixture was filtered and the filtrate was layered with Et₂O (3 mL) overnight to obtain colorless crystals.

[(^{Et2}CAAC)Cu(OEt₂)][SbF₆] (4): 130 mg, 63 % yield. ¹H NMR (CD₂Cl₂, 500.16 MHz, 298 K): δ 7.48 (t, 1H, $J_{HH} = 8$ Hz, C₆ \underline{H}_3), 7.35 (d, 2H, $J_{HH} = 8$ Hz, C₆ \underline{H}_3), 3.66 (q, 4H, $J_{HH} = 6.9$ Hz, OC \underline{H}_2 CH₃), 2.85 (sept, 2H, ³ $J_{HH} = 6.9$ Hz, C \underline{H} (CH₃)₂), 2.1 (s, 2H, C \underline{H}_2), 1.85 (m, 2H, C \underline{H}_2 CH₃), 1.72 (m, 2H, C \underline{H}_2 CH₃), 1.44 (s, 6H, C(C \underline{H}_3)₂), 1.34 (d, 6H, $J_{HH} = 6.9$ Hz, CH(C \underline{H}_3)₂), 1.22 (d, 6H, $J_{HH} = 6.9$ Hz, CH(C \underline{H}_3)₂), 1.08 (t, 6H, $J_{HH} = 7.4$ Hz, CH(C \underline{H}_3)₂), 1.00 (t, 6H, $J_{HH} = 7.4$ Hz, OCH(C \underline{H}_3)₂). ¹³C{¹H} NMR (CD₂Cl₂, 125.77 MHz, 298 K): δ 247.0 (Cu–<u>C</u>), 144.9, 135.4, 130.5, 125.5, 82.3, 71.8, 62.4, 42.1, 30.9, 29.2, 27.0, 22.2, 15.2, 9.3.

¹H NMR (acetone-d₆, 500.16 MHz, 298 K): δ 7.51(t, 1H, $J_{HH} = 8$ Hz, $C_{6}H_{3}$), 7.44 (d, 2H, $J_{HH} = 8$ Hz, $C_{6}H_{3}$), 3.39 (q, 4H, $J_{HH} = 6.9$ Hz, $OCH_{2}CH_{3}$), 3.02 (sept, 2H, ³ $J_{HH} = 6.9$ Hz, $CH(CH_{3})_{2}$), 2.18 (s, 2H, CH_{2}), 1.95 (m, 2H, $CH_{2}CH_{3}$), 1.87 (m, 2H, $CH_{2}CH_{3}$), 1.49 (s, 6H, $C(CH_{3})_{2}$), 1.35 (d, 6H, $J_{HH} = 6.9$ Hz, $CH(CH_{3})_{2}$), 1.23 (d, 6H, $J_{HH} = 6.9$ Hz, $CH(CH_{3})_{2}$), 1.10 (overlapped t, 12H, $J_{HH} = 6.9$ Hz, $CH(CH_{3})_{2}$ and $OCH(CH_{3})_{2}$). ¹³C{¹H} NMR (acetone-d₆, 125.77 MHz, 298 K): δ 250.2 (Cu–<u>C</u>), 146.0, 136.6, 130.8, 126.0, 82.7, 76.0, 63.3, 42.6, 31.4, 29.2, 27.0, 22.2, 15.2, 9.7. Anal. Calcd. for C₂₆H₄₅NOF₆CuSb: C, 45.46; H, 6.60; N, 2.04. Found: C, 45.86; H, 6.72; N, 2.31.

 $[(^{Et2}CAAC)Ag(OEt_2)][SbF_6] (5): 151 mg, 69\% yield. ^{1}H NMR (CD_2Cl_2, 500.16 MHz, 298 K):$ $\delta 7.46 (t, 1H, J_{HH} = 8 Hz, C_6H_3), 7.33 (t, 1H, J_{HH} = 8 Hz, C_6H_3), 7.30 (d, 2H, J_{HH} = 8 Hz, C_6H_3),$ $7.17 (d, 2H, J_{HH} = 8 Hz, C_6H_3), 3.53 (q, 4H, J_{HH} = 6.9 Hz, OCH_2CH_3), 2.81 (sept, 2H, ³J_{HH} = 6.9 Hz, CH(CH_3)_2), 2.63 (sept, 2H, ³J_{HH} = 6.9 Hz, CH(CH_3)_2), 2.1 (s, 2H, CH_2), 1.94 (s, 2H, CH_2),$ $1.84 (m, 2H, CH_2CH_3), 1.68 (m, 4H, CH_2CH_3), 1.48 (m, 2H, CH_2CH_3), 1.44 (s, 6H, C(CH_3)_2),$ $1.31 (d, 6H, J_{HH} = 6.9 Hz, CH(CH_3)_2), 1.29 (s, 6H, C(CH_3)_2), 1.21 (d, 6H, J_{HH} = 6.9 Hz, CH(CH_3)_2), 1.04 (t, 6H, J_{HH} = 7.4 Hz, CH(CH_3)_2), 0.90 (t, 6H, J_{HH} = 7.4 Hz, CH(CH_3)_2), 0.76 (t, 6H, J_{HH} = 7.4 Hz, OCH(CH_3)_2).$ 125.77 MHz, 298 K): δ 145.0, 135.1, 130.3, 125.4, 84.1, 68.2, 62.6, 41.8, 31.7, 29.5, 27.6, 22.4, 15.9, 9.8. Anal. Calcd. for C₂₆H₄₅NOF₆AgSb: C, 42.70; H, 6.20; N, 1.92. Found: C, 43.81; H, 6.45; N, 1.97.

[(^{Et2}CAAC)Au(OEt₂)][SbF₆] (6): 202 mg, 82 % yield. ¹H NMR (CDCl₃, 500.16 MHz, 298 K): δ 7.47 (t, 1H, $J_{HH} = 8$ Hz, $C_6\underline{H}_3$), 7.30 (d, 2H, $J_{HH} = 8$ Hz, $C_6\underline{H}_3$), 3.89 (q, 4H, $J_{HH} = 6.9$ Hz, OC \underline{H}_2 CH₃), 2.76 (sept, 2H, ${}^3J_{HH} = 6.9$ Hz, C \underline{H} (CH₃)₂), 2.2 (s, 2H, C \underline{H}_2), 1.88 (m, 2H, C \underline{H}_2 CH₃), 1.75 (m, 2H, C \underline{H}_2 CH₃), 1.46 (s, 6H, C(C \underline{H}_3)₂), 1.34-1.25 (m, 12H, CH(C \underline{H}_3)₂), 1.13-1.07 (m, 12H, CH(C \underline{H}_3)₂ and OCH(C \underline{H}_3)₂). ¹³C{¹H} NMR (CDCl₃, 125.77 MHz, 298 K): δ 224.7(Au–<u>C</u>), 144.9, 135.0, 130.8, 125.6, 82.0, 72.8, 61.9, 41.2, 31.7, 29.3, 27.1, 22.8, 15.5, 9.4. Anal. Calcd. for C₂₆H₄₅NOF₆AuSb: C, 38.07; H, 5.53; N, 1.71. Found: C, 38.41; H, 5.64; N, 1.67.

X-ray crystallographic data:

A suitable crystal covered with a layer of hydrocarbon/Paratone-N oil was selected and mounted on a Cryo-loop, and immediately placed in the low temperature nitrogen stream. The X-ray intensity data for compounds [(SIPr)Cu(OEt₂)][SbF₆] (1), [(SIPr)Ag(OEt₂)][SbF₆] (2), [(^{Et2}CAAC)Ag(OEt₂)][SbF₆] (5), and [(^{Et2}CAAC)Au(OEt₂)][SbF₆] (6) and were measured at 100(2) K on a Bruker D8 Quest with a Photon 100 CMOS detector equipped with an Oxford Cryosystems 700 series cooler, a Triumph monochromator, and a Mo K α fine-focus sealed tube ($\lambda = 0.71073$ Å). Intensity data were processed using the Bruker ApexII program suite. Absorption corrections were applied by using SADABS.⁶ Initial atomic positions were located by direct methods using XT,⁷ and the structures of the compounds were refined by the leastsquares method using SHELXL.⁸ All the non-hydrogen atoms were refined anisotropically. All hydrogen atoms were placed at calculated positions and refined using a riding model. X-ray structural figures were generated using Olex2.⁹ Compounds **1** and **2** are isomorphous. They crystallize with two molecules of CH₂Cl₂ in the asymmetric unit. Compound **5** crystallizes in P2₁/c space group with three chemically similar molecules in the asymmetric unit. The CCDC 2016681-2016684 contain the supplementary crystallographic data of **1**, **2**, **5** and **6**, deposited at the Cambridge Crystallographic Data Centre. X-ray crystal structural data of the water adducts, [(SIPr)Cu(OH₂)][SbF₆] (**7**), [(^{Et2}CAAC)Cu(OH₂)][SbF₆] (**10**), and [(^{Et2}CAAC)Au(OH₂)][SbF₆] (**12**) have also been determined, and CCDC 2016685-2016687 contain the supplementary crystallographic data. These detailed data files can be obtained free of charge *via* http://www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge, CB2 1EZ, UK).

 Table S1. Selected bond distances (Å) and angles (°) of NHC supported coinage metal water adducts

Compound	М-О	M-C	О-М-С
$[(SIPr)Cu(OH_2)][SbF_6] (7)$	1.902(5)	1.876(5)	167.5(2)
Calculated	1.976	1.869	179.8
$[(^{\text{Et2}}\text{CAAC})\text{Au}(\text{OH}_2)][\text{SbF}_6] (10)$	1.8856(10)	1.8753(12)	178.70(5)
Calculated	1.998	1.860	179.3
$[(^{Et2}CAAC)Au(OH_2)][SbF_6] (12)$	2.0889(15)	1.957(2)	177.68(7)
Calculated	2.206	1.977	178.4

References

- 1 S. Díez-González, E. D. Stevens and S. P. Nolan, *Chem. Commun.*, 2008, 4747.
- P. de Frémont, N. M. Scott, E. D. Stevens, T. Ramnial, O. C. Lightbody, C. L. B. Macdonald, J. A. C. Clyburne, C. D. Abernethy and S. P. Nolan, *Organometallics*, 2005, 24, 6301–6309.
- P. de Frémont, N. M. Scott, E. D. Stevens and S. P. Nolan, *Organometallics*, 2005, 24, 2411–2418.
- 4 A. S. Romanov, C. R. Becker, C. E. James, D. Di, D. Credgington, M. Linnolahti and M. Bochmann, *Chem. A Eur. J.*, 2017, **23**, 4625–4637.
- 5 A. S. Romanov and M. Bochmann, J. Organomet. Chem., 2017, 847, 114–120.
- 6 L. Krause, R. Herbst-Irmer, G. M. Sheldrick and D. Stalke, *J. Appl. Crystallogr.*, 2015, **48**, 3–10.
- 7 G. M. Sheldrick, *Acta Crystallogr. Sect. A Found. Adv.*, 2015, **71**, 3–8.
- 8 G. M. Sheldrick, Acta Crystallogr. Sect. C Struct. Chem., 2015, 71, 3–8.
- 9 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. *Appl. Crystallogr.*, 2009, **42**, 339–341.

Figure S1. Molecular structures of $[(SIPr)Cu(OEt_2)][SbF_6]$. The $[SbF_6]^-$ counter ion has been omitted for clarity.

Figure S2. Molecules in the asymmetric unit of [(SIPr)Cu(OEt₂)][SbF₆].

Table S2. Crystal data and structure refinement for [(SIPr)Cu(OEt₂)][SbF₆]•2CH₂Cl₂

Empirical formula	$C_{33}H_{52}Cl_4CuF_6N_2OSb$
Formula weight	933.85
Temperature/K	100.01
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	17.0397(6)
b/Å	12.0879(4)
c/Å	21.5503(7)
$\alpha/^{\circ}$	90
$\beta/^{\circ}$	113.0470(10)
$\gamma/^{\circ}$	90
Volume/Å ³	4084.5(2)
Z	4
$\rho_{calc}g/cm^3$	1.519
μ/mm^{-1}	1.499
F(000)	1896.0
Crystal size/mm ³	0.25 imes 0.24 imes 0.2
Radiation	MoK α ($\lambda = 0.71073$)
2 Θ range for data collection/°	5.674 to 61.156
Index ranges	$-24 \le h \le 24, -17 \le k \le 17, -30 \le l \le 30$
Reflections collected	54257
Independent reflections	12526 [$R_{int} = 0.0299, R_{sigma} = 0.0259$]
Data/restraints/parameters	12526/0/443
Goodness-of-fit on F ²	1.016
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0280, wR_2 = 0.0620$
Final R indexes [all data]	$R_1 = 0.0373, wR_2 = 0.0655$
Largest diff. peak/hole / e Å ⁻³	1.10/-1.10

Figure S3. Molecular structures of $[(SIPr)Ag(OEt_2)][SbF_6]$. The $[SbF_6]^-$ counter ion has been omitted for clarity.

Figure S4. Molecules in the asymmetric unit of [(SIPr)Ag(OEt₂)][SbF₆].

Table S3. Crystal data and structure refinement for [(SIPr)Ag(OEt2)][SbF6]•2CH2Cl2

Empirical formula	$C_{33}H_{52}AgCl_4F_6N_2OSb$
Formula weight	978.18
Temperature/K	100.25
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	17.0105(7)
b/Å	12.2904(5)
c/Å	21.5411(9)
a/°	90
β/°	113.2430(10)
$\gamma/^{\circ}$	90
Volume/Å ³	4138.0(3)
Z	4
$\rho_{calc}g/cm^3$	1.570
μ/mm^{-1}	1.439
F(000)	1968.0
Crystal size/mm ³	0.36 imes 0.3 imes 0.26
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.826 to 61.016
Index ranges	$-24 \le h \le 24, -17 \le k \le 17, -30 \le l \le 30$
Reflections collected	56604
Independent reflections	12609 [$R_{int} = 0.0215$, $R_{sigma} = 0.0187$]
Data/restraints/parameters	12609/0/443
Goodness-of-fit on F ²	1.041
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0222, wR_2 = 0.0537$
Final R indexes [all data]	$R_1 = 0.0254, wR_2 = 0.0552$
Largest diff. peak/hole / e Å ⁻³	1.34/-1.15

Figure S5. Molecular structures of $[(^{Et2}CAAC)Ag(OEt_2)][SbF_6]$. The $[SbF_6]^-$ counter ion has been omitted for clarity.

Figure S6. Molecules in the asymmetric unit of $[(^{Et2}CAAC)Ag(OEt_2)][SbF_6]$.

Table S4. Crystal data and structure refinement for [(^{Et2}CAAC)Ag(OEt₂)][SbF₆]

Empirical formula	$C_{26}H_{45}AgF_6NOSb$
Formula weight	731.25
Temperature/K	100.01
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	10.0885(4)
b/Å	41.0903(15)
c/Å	21.5549(8)
$\alpha^{\prime \circ}$	90
β/°	93.0160(10)
$\gamma^{/\circ}$	90
Volume/Å ³	8923.0(6)
Z	12
$\rho_{calc}g/cm^3$	1.633
μ/mm^{-1}	1.623
F(000)	4416.0
Crystal size/mm ³	0.3 imes 0.13 imes 0.12
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.744 to 54.97
Index ranges	$-13 \le h \le 13, -53 \le k \le 53, -27 \le l \le 27$
Reflections collected	100629
Independent reflections	20413 [$R_{int} = 0.0323$, $R_{sigma} = 0.0239$]
Data/restraints/parameters	20413/0/1003
Goodness-of-fit on F^2	1.108
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0319, wR_2 = 0.0710$
Final R indexes [all data]	$R_1 = 0.0396, wR_2 = 0.0737$
Largest diff. peak/hole / e Å ⁻³	2.59/-1.18

Figure S7. Molecular structures of $[(^{Et_2}CAAC)Au(OEt_2)][SbF_6]$. The $[SbF_6]^-$ counter ion has been omitted for clarity.

Figure S8. Asymmetric unit of [(^{Et2}CAAC)Au(OEt₂)][SbF₆].

Table S5. Crystal data and structure refinement for [(^{Et2}CAAC)Au(OEt₂)][SbF₆].

Empirical formula	$C_{26}H_{45}AuF_6NOSb$
Formula weight	820.34
Temperature/K	100.0
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.5000(7)
b/Å	17.3023(10)
c/Å	14.9126(9)
$\alpha/^{\circ}$	90
β/°	96.383(2)
$\gamma^{/\circ}$	90
Volume/Å ³	2948.9(3)
Z	4
$\rho_{calc}g/cm^3$	1.848
μ/mm^{-1}	5.942
F(000)	1600.0
Crystal size/mm ³	0.31 imes 0.31 imes 0.2
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.452 to 66.49
Index ranges	$-17 \le h \le 17, -26 \le k \le 26, -23 \le l \le 22$
Reflections collected	70958
Independent reflections	11301 [$R_{int} = 0.0368$, $R_{sigma} = 0.0246$]
Data/restraints/parameters	11301/0/336
Goodness-of-fit on F^2	1.100
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0256, wR_2 = 0.0543$
Final R indexes [all data]	$R_1 = 0.0308, wR_2 = 0.0560$
Largest diff. peak/hole / e Å ⁻³	1.94/-1.50

Figure S9. Molecular structures of $[(SIPr)Cu(OH_2)][SbF_6]$. The $[SbF_6]^-$ counter ion has been omitted for clarity.

Table S6. Crystal data and structure refinement for [(SIPr)Cu(OH₂)][SbF₆]•0.5(H₂O).

Empirical formula	$C_{27}H_{41}CuF_6N_2O_{1.5}Sb$
Formula weight	716.91
Temperature/K	100.0
Crystal system	trigonal
Space group	R3c
a/Å	27.8000(10)
b/Å	27.8000(10)
c/Å	21.5997(8)
α/°	90
$\beta/^{\circ}$	90
$\gamma/^{\circ}$	120
Volume/Å ³	14456.7(12)
Z	18
$\rho_{calc}g/cm^3$	1.482
μ/mm^{-1}	1.560
F(000)	6534.0
Crystal size/mm ³	$0.41 \times 0.09 \times 0.09$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.854 to 56.558
Index ranges	$-37 \le h \le 37, -37 \le k \le 37, -28 \le l \le 28$
Reflections collected	56564
Independent reflections	7972 [$R_{int} = 0.0424$, $R_{sigma} = 0.0280$]
Data/restraints/parameters	7972/0/360
Goodness-of-fit on F ²	1.040
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0377, wR_2 = 0.0960$
Final R indexes [all data]	$R_1 = 0.0412, wR_2 = 0.0982$
Largest diff. peak/hole / e Å ⁻³	1.85/-0.79

Figure S10. Molecular structures of $[(^{Et2}CAAC)Cu(OH_2)][SbF_6]$. The $[SbF_6]^-$ counter ion has been omitted for clarity.

Table S7 Crystal data and structure refinement for [(^{Et2}CAAC)Cu(OH₂)][SbF₆].

Empirical formula	C ₂₂ H ₃₇ CuF ₆ NOSb
Formula weight	630.81
Temperature/K	99.99
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	8.4439(3)
b/Å	11.1960(4)
c/Å	27.3426(10)
a/°	90
β/°	97.2270(10)
$\gamma/^{\circ}$	90
Volume/Å ³	2564.38(16)
Z	4
$\rho_{calc}g/cm^3$	1.634
μ/mm^{-1}	1.940
F(000)	1272.0
Crystal size/mm ³	$0.32 \times 0.28 \times 0.11$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.792 to 61.016
Index ranges	$-12 \le h \le 12, -15 \le k \le 15, -39 \le l \le 39$
Reflections collected	34846
Independent reflections	7793 [$R_{int} = 0.0219, R_{sigma} = 0.0185$]
Data/restraints/parameters	7793/0/306
Goodness-of-fit on F^2	1.044
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0194, wR_2 = 0.0449$
Final R indexes [all data]	$R_1 = 0.0216, wR_2 = 0.0457$
Largest diff. peak/hole / e Å ⁻³	0.49/-0.41

Figure S11. Molecular structures of $[(^{Et2}CAAC)Au(OH_2)][SbF_6]$. The $[SbF_6]^-$ counter ion has been omitted for clarity.

Table S8 Crystal data and structure refinement for [(^{Et2}CAAC)Au(OH₂)][SbF₆].

Empirical formula	$C_{22}H_{37}AuF_6NOSb$
Formula weight	764.24
Temperature/K	100.01
Crystal system	orthorhombic
Space group	Pbca
a/Å	12.9320(5)
b/Å	16.4501(6)
c/Å	24.4593(9)
α/°	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	5203.3(3)
Z	8
$\rho_{calc}g/cm^3$	1.951
μ/mm^{-1}	6.728
F(000)	2944.0
Crystal size/mm ³	$0.16 \times 0.15 \times 0.07$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	5.21 to 66.65
Index ranges	$-19 \le h \le 19, -25 \le k \le 25, -37 \le l \le 37$
Reflections collected	81547
Independent reflections	10017 [$R_{int} = 0.0461$, $R_{sigma} = 0.0250$]
Data/restraints/parameters	10017/0/299
Goodness-of-fit on F ²	1.050
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0233, wR_2 = 0.0427$
Final R indexes [all data]	$R_1 = 0.0349, wR_2 = 0.0458$
Largest diff. peak/hole / e Å ⁻³	1.17/-0.80

	1		2		3	
ΔE^{Pauli}	65.9		48.6		73.7	
ΔE^{Elstat}	-66.6	57.7%	-50.0	58.7%	-69.7	57.3%
ΔE^{Orb}	-31.1	26.9%	-23.2	27.3%	-38.0	31.3%
ΔE^{Disp}	-17.9	15.4%	-11.9	14.0%	-13.9	11.4%
ΔE^{Int}	-49.6		-36.6		-48.0	
	4		5		6	
ΔE^{Pauli}	60.1		42.8		70.2	
ΔE^{Elstat}	-61.6	57.8%	-44.9	58.1%	-65.9	57.3%
ΔE^{Orb}	-30.2	28.3%	-21.6	27.9%	-36.6	31.8%
ΔE^{Disp}	-14.8	13.9%	-10.8	14.0%	-12.5	10.9%
ΔE^{Int}	-46.5		-34 5		-44.8	
	1010		5115		1110	

Table S9. Energy decomposition analysis for for $[(NHC)M]^+\cdots OEt_2$ interaction. Values in kcal·mol⁻¹.

Table S10.	Energy decomposition	analysis for for	$[(\mathbf{NHC})\mathbf{M}]^+\cdots$	OH ₂ interaction.	Values in
kcal·mol ⁻¹ .					

	7		8		9	
ΔE^{Pauli}	36.3		28.2		48.4	
ΔE^{Elstat}	-44.4	66.7%	-34.8	69.3%	-50.8	64.6%
ΔE^{Orb}	-19.1	28.7%	-13.9	27.6%	-26.1	33.1%
ΔE^{Disp}	-3.1	4.6%	-1.6	3.1%	-1.8	2.3%
ΔE^{Int}	-30.2		-22.0		-30.3	
	10		11		12	
	10		11		12	
ΔE^{Pauli}	10 37.8		26.3		48.2	
$\frac{\Delta E^{Pauli}}{\Delta E^{Elstat}}$	10 37.8 -45.4	67.3%	11 26.3 -32.7	68.9%	12 48.2 -49.4	64.4%
$\begin{array}{c} \Delta E^{Pauli} \\ \Delta E^{Elstat} \\ \Delta E^{Orb} \end{array}$	10 37.8 -45.4 -19.1	67.3% 28.4%	11 26.3 -32.7 -13.2	68.9% 27.8%	12 48.2 -49.4 -25.5	64.4% 33.3%
$ \begin{aligned} \Delta E^{Pauli} \\ \Delta E^{Elstat} \\ \Delta E^{Orb} \\ \Delta E^{Disp} \end{aligned} $	10 37.8 -45.4 -19.1 -2.9	67.3% 28.4% 4.3%	11 26.3 -32.7 -13.2 -1.6	68.9% 27.8% 3.3%	12 48.2 -49.4 -25.5 -1.8	64.4% 33.3% 2.3%
$\begin{array}{c} \Delta E^{Pauli} \\ \Delta E^{Elstat} \\ \Delta E^{Orb} \\ \Delta E^{Disp} \end{array}$	10 37.8 -45.4 -19.1 -2.9	67.3% 28.4% 4.3%	11 26.3 -32.7 -13.2 -1.6	68.9% 27.8% 3.3%	12 48.2 -49.4 -25.5 -1.8	64.4% 33.3% 2.3%
ΔE^{Pauli} ΔE^{Elstat} ΔE^{Orb} ΔE^{Disp} ΔE^{Int}	10 37.8 -45.4 -19.1 -2.9 -29.6	67.3% 28.4% 4.3%	11 26.3 -32.7 -13.2 -1.6 -21.1	68.9% 27.8% 3.3%	12 48.2 -49.4 -25.5 -1.8 -28.5	64.4% 33.3% 2.3%

Table 8	S11. Energy	decomposition	analysis for	$[(SIPr)I]^+ \cdots OE$	t ₂ (13) and [((SIPr)I] ⁺ ····()H ₂
(14) in	teraction. Va	alues in kcal∙mo	ol ⁻¹ .				

	13		14	
ΔE^{Pauli}	19.64		11.05	
ΔE^{Elstat}	-16.03	48.5%	-12.05	66.4%
ΔE^{Orb}	-9.2	27.8%	-4.8	26.4%
ΔE^{Disp}	-7.8	23.7%	-1.3	7.3%
ΔE^{Int}	-13.4		-7.1	

Figure S11. Relevant charge-transfer related to the $[(NHC)M]^+\cdots$ OEt₂ interaction, as a representative case for all the studied species accounting for the ΔE^{Orb} term. Charge flow from red to blue isosurfaces.

	···OEt ₂		···OH ₂		\cdots SH ₂	
ΔE^{Pauli}	9.6		14.3		10.0	
ΔE^{Elstat}	-5.7	34.2%	-11.7	49.8%	-6.9	41.1%
ΔE^{Orb}	-3.9	23.3%	-8.5	36.2%	-5.7	33.9%
ΔE^{Disp}	-7.1	42.5%	-3.3	14.0%	-4.2	25.1%
ΔE^{Int}	-7.0		-9.2		-6.8	

Table S12. Energy decomposition analysis for imidazole-2-thione derivative of 1 for interaction toward, OEt_2 , OH_2 and SH_2 solvent molecules. Values in kcal·mol⁻¹.

Figure S12. Optimized structures for imidazole-2-thione derivative of 1 for interaction toward, OEt₂, OH₂ and SH₂ solvent molecules, denoting the lesser interaction.

Table S13. Coordinates for optimized structures, in a multipleXYZ format. Distances in Angstrom (Å).

83

1			
0	0.0158	0.0289	3.1849
С	1.2388	-0.3779	3.8938
Н	1.1983	-1.4683	4.0490
Н	1.2215	0.1247	4.8731
С	-1.2241	-0.3309	3.8866
Н	-1.2481	-1.4263	4.0014
Н	-1.1752	0.1339	4.8825
С	-2.4018	0.1796	3.0843
Н	-2.2984	1.2540	2.8836
Н	-2.5099	-0.3520	2.1265
Н	-3.3275	0.0227	3.6541
С	2.4409	0.0352	3.0723
Н	3.3591	-0.1843	3.6340
Н	2.4963	-0.5101	2.1180
Н	2.4207	1.1115	2.8558
Cu	0.0037	0.0410	1.2514
Ν	1.0892	0.0782	-1.3846
Ν	-1.0987	-0.0495	-1.3841
С	-0.0052	0.0296	-0.6110
С	0.7379	0.1958	-2.8233
Н	1.3755	-0.4524	-3.4356
Н	0.8806	1.2393	-3.1448
С	-0.7431	-0.2255	-2.8161
Н	-1.3796	0.3960	-3.4563
Н	-0.8842	-1.2816	-3.0941

С	2.4009	0.3345	-0.8541
С	3.2847	-0.7579	-0.7269
С	4.5478	-0.5086	-0.1784
Н	5.2581	-1.3265	-0.0616
С	4,9092	0.7769	0.2293
Н	5.8995	0.9528	0.6508
C	4 0127	1 8350	0 1028
н	4 3088	2 8320	0.4321
C	2 7352	1 6396	-0 1119
C	2.7552	1.0390	1 0750
	2.0320	-2.1097	-1.0758
Н	2.0505	-2.0905	-1.8458
0	3.9525	-3.0543	-1.6403
H	4.4601	-2.5698	-2.484/
H	3.5374	-4.0094	-1.9892
H	4.7083	-3.2903	-0.8789
С	2.1846	-2.8206	0.1622
Н	1.8078	-3.8253	-0.0754
Н	1.3408	-2.2181	0.5312
Н	2.9187	-2.9132	0.9752
С	1.7628	2.8067	-0.5444
Н	0.8235	2.4375	-0.9816
С	2.3048	3.9130	-1.4671
Н	3.2243	4.3574	-1.0606
Н	1.5651	4.7180	-1.5765
Н	2.5386	3.5192	-2.4656
С	1.4166	3.3585	0.8502
Н	0.9731	2.5751	1.4844
Н	0.6915	4.1794	0.7715
н	2 3095	3 7419	1 3632
C	-2 4109	-0 3018	-0 8525
C	-2 7389	-1 5980	-0 4068
C	_1 0237	-1 7010	0.1010
	4.0257	1.7919 2.7020	0.1210
п	-4.JIJZ 4.0212	-2.7020	0.4/4/
	-4.9313	-0.7390	0.2070
п	-5.9264	-0.9127	0.0101
C	-4.5/33	0.5391	-0.2252
H	-5.2912	1.3539	-0.13/4
С	-3.3053	0.7853	-0.7637
С	-1.7488	-2.7536	-0.4442
H	-0.8052	-2.3873	-0.8742
С	-1.4275	-3.2424	0.9806
Н	-1.0215	-2.4208	1.5930
Н	-0.6801	-4.0468	0.9547
Н	-2.3247	-3.6260	1.4854
С	-2.2523	-3.9054	-1.3320
Н	-3.1749	-4.3466	-0.9295
Н	-1.4985	-4.7030	-1.3905

H	-2.4677	-3.5565	-2.3513
С	-2.8591	2.1904	-1.1447
H	-2.0804	2.0954	-1.9170
С	-2.2065	2.8667	0.0774
Н	-2.9383	2.9756	0.8903
Н	-1.8310	3.8662	-0.1829
Н	-1.3629	2.2714	0.4575
C	-3.9833	3.0611	-1.7217
H	-4.7357	3.3115	-0.9610
н	-4 4945	2 5598	-2 5544
и П	-3 571/	1 0097	-2 0912
83	5.5714	4.0007	2.0912
2			
2	0 0604	0 0764	2 5710
0	1 2444	0.0764	3.5719
	1.0444	-0.2256	4.2090
п	1,4200	-1.3192	4.3290
H	1.328/	0.2379	5.2083
C	-1.08/5	-0.4402	4.3208
H	-0.9/2/	-1.5315	4.4285
H	-1.0589	0.0184	5.3212
C	-2.3634	-0.0836	3.5853
H	-2.4365	1.0004	3.4252
H	-2.4336	-0.5951	2.6115
H	-3.2284	-0.3995	4.1842
С	2.4691	0.3309	3.3597
H	3.4287	0.1490	3.8609
Η	2.5209	-0.1541	2.3710
Н	2.3593	1.4142	3.2146
Ag	-0.0162	0.0621	1.3821
Ν	1.0784	0.0911	-1.4370
N	-1.1060	-0.0631	-1.4617
С	-0.0240	0.0296	-0.6825
С	0.7487	0.1906	-2.8838
Н	1.3916	-0.4720	-3.4749
Н	0.9053	1.2277	-3.2179
С	-0.7367	-0.2215	-2.8945
H	-1.3635	0.4150	-3.5299
H	-0.8847	-1.2718	-3.1888
C	2.3852	0.3310	-0.8860
C	3 2445	-0.7755	-07244
C	4 4945	-0 5444	-0 1378
с ц	5 18/5	-1 3751	0.1370
C	J. 104J 1 8673	1.J/J1 0.7376	0.0000
U U	5 0160	0.1310	0.2090
п С	J.0407 2 0050	U.0993 1 0110	0.1203
	3.9959	T.QTTQ	U.1U26
п	4.JULX	∠.8U64	0.4295
C	2.1321	⊥.6348	-0.4/82

С	2.7893	-2.1830	-1.0854
Н	1.9770	-2.0941	-1.8226
С	3.8970	-3.0396	-1.7163
Н	4.3578	-2.5308	-2.5737
Н	3.4817	-3.9951	-2.0642
н	4 6915	-3 2758	-0 9950
C	2 1945	-2 8683	0 1607
U U	1 83//	-3 8778	-0 0824
11 TT	1 2/01	2 2010	0.0024
п	1.3401	-2.2910	0.3010
Н	2.9032	-2.9550	0.9515
C	1./901	2.8207	-0.6338
H	0.8430	2.4568	-1.0585
С	2.3679	3.8663	-1.6055
Н	3.2999	4.2983	-1.2147
Н	1.6543	4.6883	-1.7550
Η	2.5932	3.4200	-2.5838
С	1.4548	3.4517	0.7293
Н	1.0103	2.7100	1.4102
Н	0.7358	4.2727	0.6069
Н	2.3522	3.8579	1.2161
С	-2.4251	-0.3032	-0.9417
С	-2.7642	-1.5970	-0.4973
С	-4.0465	-1.7761	0.0415
н	-4 3482	-2 7638	0 3927
C	-1 9/22	-0 7129	0 1324
U U	-5 9360	-0 8759	0.1524
C II	-4 5762	0.5594	-0 3080
	5 2060	1 2015	0.3009
п	-5.2000	1.3010	-0.2203
C	-3.3083	0.7923	-0.8549
C	-1./980	-2.//10	-0.5/39
H	-0.8403	-2.4065	-0.9/35
С	-1.5082	-3.3472	0.8233
H	-1.1053	-2.5715	1.4931
H	-0.7701	-4.1579	0.7605
Н	-2.4177	-3.7524	1.2879
С	-2.3182	-3.8603	-1.5294
Н	-3.2587	-4.2944	-1.1624
Н	-1.5859	-4.6745	-1.6207
Н	-2.5097	-3.4525	-2.5312
С	-2.8600	2.1929	-1.2501
Н	-2.0364	2.0897	-1.9730
С	-2.2892	2.9202	-0.0159
H	-3.0625	3.0292	0.7576
H	-1 9292	3 9230	-0 2858
H	-1 4487	2 3606	0 <u>4</u> 2000
C	-3 06/6	2.0000	-1 9210
с ц		3 0727	_1 0175
11	-4.//04	5.2151	-1.21/0

Η	-4.4100	2.4854	-2.7695
Н	-3.5511	3.9702	-2.2904
83			
3			
0	0.0227	0.1262	3.4451
С	1.2902	-0.2087	4.1285
Н	1.3445	-1.3085	4.2272
Н	1.2227	0.2408	5.1348
С	-1.1565	-0.4008	4.1621
H	-1.0620	-1.5007	4.2121
Н	-1.1058	0.0123	5.1843
С	-2.4220	0.0295	3.4491
H	-2.4565	1.1232	3.3291
H	-2.5225	-0.4421	2.4563
H	-3.2860	-0.2784	4.0548
С	2.4602	0.3519	3.3434
H	3.3798	0.1908	3.9244
H	2.5882	-0.1469	2.3654
H	2.3457	1.4354	3.1741
Au	-0.0027	0.0437	1.3102
N	1.0898	0.0805	-1.4211
N	-1.1036	-0.0869	-1.4312
С	-0.0123	0.0086	-0.6646
С	0.7476	0.1799	-2.8611
Н	1.3806	-0.4902	-3.4545
H	0.9105	1.2144	-3.1998
С	-0.7434	-0.2213	-2.8648
Н	-1.3697	0.4345	-3.4810
H	-0.9033	-1.2636	-3.1799
С	2.3991	0.3243	-0.8757
С	3.2560	-0.7815	-0.7056
С	4.5071	-0.5451	-0.1233
Н	5.1958	-1.3756	0.0318
С	4.8814	0.7405	0.2694
Н	5.8616	0.9060	0.7182
С	4.0104	1.8139	0.0940
Н	4.3170	2.8115	0.4114
С	2.7451	1.6321	-0.4808
С	2.8033	-2.1927	-1.0532
H	1.9513	-2.1108	-1.7450
С	3.8918	-3.0208	-1.7530
Н	4.2901	-2.4972	-2.6323
Н	3.4798	-3.9846	-2.0816
Н	4.7322	-3.2401	-1.0801
С	2.2882	-2.9009	0.2156
Н	1.9222	-3.9096	-0.0227
H	1.4650	-2.3353	0.6773

H	3.0945	-2.9951	0.9571
С	1.8017	2.8154	-0.6449
Н	0.8498	2.4450	-1.0535
С	2.3708	3.8430	-1.6405
Н	3.3073	4.2796	-1.2659
Н	1.6573	4.6638	-1.7968
Н	2.5865	3.3801	-2.6134
С	1.4784	3.4682	0.7104
H	1.0377	2.7356	1,4023
н	0 7593	4 2877	0 5791
н	2 3799	3 8831	1 1822
C	-2 4207	-0.3218	-0 9013
C	-2 7696	-1 6229	-0 4875
C	-4 0477	-1 7999	0.1673
с ц	-1 3577	-2 7926	0.0002
C	-1 9271	-0 7271	0.3035
U U	-5 9179	-0 8885	0.1920
C	_1 5/81	0.5525	-0.2138
U U	-4.0401	1 3920	-0.2130
C	-3 29/5	1.3029	-0 7708
C	-J.204J 1 0104	2 0017	-0.7708
	-1.0124	-2.0017	-0.3929
п С	-0.0302	-2.4307	-0.9903
	-1.5100 1 1022	-3.39/4	1 4674
п т	-1.1032	-2.0202	1.40/4
H	-0.//2/	-4.2066	0.7122
H	-2.4167	-3.8113	1.2582
C	-2.3489	-3.8/3/	-1.5588
H 	-3.2881	-4.30/5	-1.18/8
H	-1.6230	-4.6912	-1.6688
H	-2.5486	-3.4512	-2.5532
С	-2.8264	2.1900	-1.1295
H	-1.9603	2.0992	-1.8025
С	-2.3385	2.9151	0.1406
H	-3.1615	3.0217	0.8616
H	-1.9635	3.9189	-0.1034
H	-1.5296	2.3534	0.6309
С	-3.9005	3.0078	-1.8621
H	-4.7552	3.2344	-1.2099
H	-4.2794	2.4736	-2.7434
Н	-3.4825	3.9682	-2.1930
74			
4			
0	-0.6485	0.2779	-1.7304
С	-1.2151	1.6077	-1.9848
Н	-1.8588	1.5166	-2.8722
Н	-0.3895	2.2997	-2.2143
С	-2.0067	2.0510	-0.7740

H	-2.5128	3.0020	-0.9912
Н	-1.3529	2.2079	0.0968
Н	-2.7683	1.3032	-0.5131
С	0.0747	-0.2534	-2.8973
Н	0.9765	0.3605	-3.0486
Н	-0.5896	-0.1303	-3.7648
С	0.4104	-1.7057	-2.6556
H	0.9172	-2.1113	-3.5420
H	-0.4984	-2.2931	-2.4735
H	1 0914	-1 8313	-1 7999
C11	0 0357	-0 1459	0 0603
N	1 5808	-1 4761	1 9818
C	0 7320	-0 5028	1 7548
C	0 4636	0 2619	3 0331
C	1 5757	-0 2433	3 9933
с ц	2 3961	0.1881	1 0187
и П	1 2130	-0 3684	5 021/
П	2 1000	-0.5004 -1.5791	3 12214
C	-0 9495	-1.3781	3 5624
с u	-0.9495	-0.1399	3 7096
	1 0502	-1.2300	1 5660
п	-1.0303	0.2993	4.0009
	-2.1449	0.2000	2.0975
п II	-2.1055	-0.2013	1.7030 2.5527
H	-2.1940	1.3566	2.000/
H	-3.0840	-0.0438	3.1/45
C	0.5/52	1.7800	2.7584
H	1.5805	1.9/5/	2.3501
H	-0.1294	2.0435	1.9539
C	0.3268	2.6650	3.9826
H	0.5062	3./206	3./385
H	0.9937	2.3991	4.8150
Н	-0.7078	2.5798	4.3424
С	3.6274	-1.6755	3.4544
H	4.1061	-0.7924	3.0149
H	3.9811	-2.5730	2.9286
H	3.9497	-1.7469	4.5024
С	1.5112	-2.8153	4.1100
H	1.8067	-3.7316	3.5824
Н	0.4169	-2.7782	4.1710
Н	1.9064	-2.8711	5.1336
С	1.9364	-2.4389	0.9500
С	1.0904	-3.5492	0.7369
С	1.4869	-4.4817	-0.2326
Н	0.8590	-5.3538	-0.4192
С	2.6566	-4.3086	-0.9685
Н	2.9519	-5.0547	-1.7062
С	3.4321	-3.1658	-0.7854

H	4.3171	-3.0125	-1.4037
С	3.0848	-2.1980	0.1669
С	-0.2623	-3.7107	1.4223
Н	-0.3446	-2.9436	2.2002
С	-1.3983	-3.4433	0.4158
Н	-1.3728	-4.1680	-0.4110
Н	-1.3140	-2.4343	-0.0185
H	-2.3770	-3.5230	0.9107
С	-0.4406	-5.0832	2.0908
н	0 3690	-5 3006	2 7998
н	-0 4609	-5 8931	1 3482
н	-1 3934	-5 1165	2 6380
C	3 8651	-0 8902	0 2313
с ч	3 5262	-0 3348	1 11/2
C	3 5261	-0 0192	-0 9977
ч	2 1/91	0.0152	-1 0207
п п	2 7 9 3 /	-0 5374	_1 0207
п u	1 0913	-0.0374	-1.9297
С	5 3922	-1 1021	-0.9013
U U	5 7999	-1.5500	-0 5540
п	J. 7909 5 6215	-1.JJ99	-0.5549
п	5.0515	-1.755Z	1.2010
H 74	5.8907	-0.1385	0.4963
74 E			
5		0 01 00	0 0005
0	-0.7513	0.3183	-2.0885
C	-1.2623	1.6515	-2.4038
Н	-1.8410	1.5696	-3.33/2
H	-0.4091	2.3292	-2.5794
С	-2.1351	2.1309	-1.2649
H	-2.5817	3.1022	-1.5224
H	-1.5521	2.2657	-0.3402
H	-2.9489	1.4176	-1.0720
С	0.0560	-0.2381	-3.1748
H	0.9630	0.3786	-3.2906
H	-0.5422	-0.1600	-4.0963
С	0.3930	-1.6800	-2.8618
H	0.9402	-2.1178	-3.7078
Н	-0.5197	-2.2695	-2.6983
Н	1.0405	-1.7703	-1.9745
Ag	-0.0493	-0.1184	-0.0107
Ν	1.5831	-1.4812	2.0591
С	0.7249	-0.5128	1.8775
С	0.4826	0.2279	3.1720
С	1.6215	-0.2882	4.0949
Н	2.4366	0.4488	4.1168
Н	1.2842	-0.4358	5.1281
С	2.1393	-1.6077	3.4885

С	-0.9127	-0.1943	3.7365
Н	-0.9273	-1.2910	3.8353
Н	-0.9652	0.1977	4.7644
С	-2.1447	0.2613	2.9516
н	-2.1637	-0.1628	1,9369
H	-2 1928	1 3558	2 8608
н	-3 0599	-0.0659	3 4650
C	0 5771	1 7538	2 9340
с ц	1 5680	1 9679	2.9940
11 TT	1.J000 0.1575	2 0402	2.4990 2.1656
п	-0.1373	2.0402	2.1000
	0.3690	2.5972	4.1953
H	0.5360	3.6611	3.9/81
H	1.0652	2.3116	4.9963
H	-0.6523	2.4967	4.5876
С	3.6645	-1.6957	3.4781
Η	4.1246	-0.8047	3.0357
H	4.0106	-2.5848	2.9341
Н	4.0150	-1.7754	4.5161
С	1.5702	-2.8574	4.1673
Н	1.8595	-3.7643	3.6202
Н	0.4777	-2.8278	4.2528
Н	1.9877	-2.9269	5.1812
С	1.9287	-2.4192	0.9970
С	1.0933	-3.5380	0.7830
С	1.4673	-4.4347	-0.2284
Н	0.8461	-5.3104	-0.4176
С	2.6037	-4.2212	-1.0038
Н	2.8781	-4.9372	-1.7779
C	3 3716	-3 0754	-0.8104
н	4 2310	-2 8897	-1 4547
C	3 0/80	-2.0097	0 1832
C	0.2206	2.1400	1 5101
	-0.2300	-3.7520	1.JIUI 2.2010
п	-0.3210	-2.9901	2.2919
	-1.4093	-3.5398	0.5416
H	-1.3900	-4.2783	-0.2729
H	-1.3/65	-2.5378	0.0864
Н	-2.3665	-3.6444	1.0730
С	-0.3298	-5.1331	2.1799
H	0.5059	-5.3189	2.8663
H	-0.3335	-5.9404	1.4343
Н	-1.2657	-5.2102	2.7512
С	3.8315	-0.8345	0.2583
Н	3.4787	-0.2728	1.1326
С	3.5325	0.0334	-0.9801
Н	2.4565	0.2578	-1.0558
Н	3.8357	-0.4789	-1.9044
Н	4.0767	0.9870	-0.9244

H 5.7705 -1.5292 -0.4881 H 5.8522 -1.6976 1.2670 H 5.8588 -0.0935 0.5453 74 -6 C -1.3228 1.6154 -2.2046 H -1.8360 1.5490 -3.1755 H -0.4879 2.3280 -2.2907 C -2.2854 1.9921 -1.1019 H -2.7640 2.9492 -1.3523 H -1.7689 2.1113 -0.1377 H -3.0689 1.2307 -0.9923 C 0.0665 -0.2099 -3.0555 H 0.9629 0.4268 -3.1196 H 0.9516 -2.0382 -3.7181 H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 1.2651 -0.3922 5.0820 C 2.1209 -1.5945 3.4627 C -0.9163 -0.1374 3.6680 H -0.9664 0.2579 4.6947 C -2.1655 1.4306 2.7795 H -2.1655 1.4306 2.7795 H -2.1655 1.4306 2.7795 H -0.6263 2.5549 4.5078 <t< th=""><th>С</th><th>5.3455</th><th>-1.0560</th><th>0.4084</th></t<>	С	5.3455	-1.0560	0.4084
H 5.5822 -1.6976 1.2670 H 5.8588 -0.0935 0.5453 74 -6 O -0.7659 0.2781 -1.9387 C -1.3228 1.6154 -2.2046 H -1.8360 1.5490 -3.1755 H -0.4879 2.3280 -2.2907 C -2.2854 1.9921 -1.1019 H -2.7640 2.9492 -1.3523 H -1.7689 2.1113 -0.1377 H -3.0689 1.2307 -0.9923 C 0.0665 -0.2099 -3.0555 H 0.9629 0.4268 -3.1196 H -0.5341 -0.0749 -3.9670 C 0.4148 -1.6639 -2.8354 H 0.9516 -2.0382 -3.7181 H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 1.2651 -0.3922 5.0820 C 2.1209 -1.5945 3.4627 C -0.9163 -0.1374 3.6680 H -0.9664 0.2579 4.6947 C -2.1644 -0.0932 1.8655 H -2.1655 1.4306 2.7795 <td>Н</td> <td>5.7705</td> <td>-1.5292</td> <td>-0.4881</td>	Н	5.7705	-1.5292	-0.4881
H 5.8588 -0.0935 0.5453 74 - 6 - 0 -0.7659 0.2781 -1.9387 C -1.3228 1.6154 -2.2046 H -1.8360 1.5490 -3.1755 H -0.4879 2.3280 -2.2907 C -2.2854 1.9921 -1.1019 H -2.7640 2.9492 -1.3523 H -1.7689 2.1113 -0.1377 H -3.0689 1.2307 -0.9923 C 0.0665 -0.2099 -3.0555 H 0.9629 0.4268 -3.1196 C 0.4652 -0.0749 -3.9670 C 0.4148 -1.6639 -2.8354 H 0.9516 -2.0382 -3.7181 H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.4945 1.8326 C 0.7520 -0.4945 1.8326 C 0.7520 <th< td=""><td>Н</td><td>5.5822</td><td>-1.6976</td><td>1.2670</td></th<>	Н	5.5822	-1.6976	1.2670
7460-0.76590.2781-1.9387C-1.32281.6154-2.2046H-1.83601.5490-3.1755H-0.48792.3280-2.2907C-2.28541.9921-1.1019H-2.76402.9492-1.3523H-1.76892.1113-0.1377H-3.06891.2307-0.9923C0.0665-0.2099-3.0555H0.96290.4268-3.1196H-0.5341-0.0749-3.9670C0.4148-1.6639-2.8354H0.9516-2.0382-3.7181H-0.4926-2.2666-2.6996H1.0694-1.8041-1.9617Au0.0032-0.11050.0441N1.5938-1.47972.0273C0.7520-0.49451.8326C0.48990.26513.1147C1.6135-0.26044.0503H2.43920.46524.0703H2.43920.46524.0703H2.43920.3592.8779H-2.1644-0.09321.8655H-0.9469-1.23373.7684H-0.96640.25794.6947C-2.13920.33592.8779H-2.16551.43062.7795H-2.16551.43062.7795H-0.17712.07922.0903C0.3989 <td< td=""><td>Н</td><td>5.8588</td><td>-0.0935</td><td>0.5453</td></td<>	Н	5.8588	-0.0935	0.5453
	74			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	-0.7659	0.2781	-1.9387
H -1.8360 1.5490 -3.1755 H -0.4879 2.3280 -2.2907 C -2.2854 1.9921 -1.1019 H -2.7640 2.9492 -1.3523 H -1.7689 2.1113 -0.1377 H -3.0689 1.2307 -0.9923 C 0.0665 -0.2099 -3.0555 H 0.9629 0.4268 -3.1196 H -0.5341 -0.0749 -3.9670 C 0.4148 -1.6639 -2.8354 H 0.9516 -2.0382 -3.7181 H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 2.4392 0.4652 4.0703 H 2.4392 0.4652 4.0703 H 2.4392 0.3592 5.0820 C 2.1209 -1.2337 3.7684 H -0.9664 0.2579 4.6947 C -2.1392 0.3359 2.8779 H -2.1655 1.4306 2.7795 H -3.0596 0.0295 3.3945 C 0.6064 1.7888 2.8674 H 1.6031 1.9868 2.4395 H -0.1171 2.0	С	-1.3228	1.6154	-2.2046
H -0.4879 2.3280 -2.2907 C -2.2854 1.9921 -1.1019 H -2.7640 2.9492 -1.3523 H -1.7689 2.1113 -0.1377 H -3.0689 1.2307 -0.9923 C 0.0665 -0.2099 -3.0555 H 0.9629 0.4268 -3.1196 H -0.5341 -0.0749 -3.9670 C 0.4148 -1.6639 -2.37181 H -0.9516 -2.0382 -3.7181 H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 2.4392 0.4652 4.0703 H 2.4392 0.4652 4.0703 H 2.6135 -0.3922 5.0820 C 2.1209 -1.5945 3.4627 C -0.9163 -0.1374 3.6680 H -0.9664 0.2579 4.6947 C -2.1392 0.3359 2.8779 H -2.1655 1.4306 2.7795 H -2.1655 1.4306 2.7795 H -0.1171 2.0792 2.0903 C 0.3989 2.6414 4.1220 H 0.6263	Н	-1.8360	1.5490	-3.1755
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-0.4879	2.3280	-2.2907
H -2.7640 2.9492 -1.3523 H -1.7689 2.1113 -0.1377 H -3.0689 1.2307 -0.9923 C 0.0665 -0.2099 -3.0555 H 0.9629 0.4268 -3.1196 H -0.5341 -0.0749 -3.9670 C 0.4148 -1.6639 -2.8354 H 0.9516 -2.0382 -3.7181 H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 2.4392 0.4652 4.0703 H 1.2651 -0.3922 5.0820 C 2.1209 -1.5945 3.4627 C -0.9163 -0.1374 3.6680 H -0.9664 0.2579 4.6947 C -2.1392 0.3359 2.8779 H -2.1644 -0.0932 1.8655 H -2.1655 1.4306 2.7795 H -3.0596 0.0295 3.3945 C 0.6064 1.7888 2.8674 H 1.0868 2.3532 4.9295 H -0.6263 2.5549 4.5078 C 0.6263 2.5549 4.5078 C 0.6263 2.55	С	-2.2854	1.9921	-1.1019
H -1.7689 2.1113 -0.1377 H -3.0689 1.2307 -0.9923 C 0.0665 -0.2099 -3.0555 H 0.9629 0.4268 -3.1196 H -0.5341 -0.0749 -3.9670 C 0.4148 -1.6639 -2.8354 H 0.9516 -2.0382 -3.7181 H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 2.4392 0.4652 4.0703 H 2.4392 0.4652 4.0703 H 2.651 -0.3922 5.0820 C 2.1209 -1.5945 3.4627 C -0.9163 -0.1374 3.6680 H -0.9664 0.2579 4.6947 C -2.1392 0.3359 2.8779 H -2.1655 1.4306 2.7795 H -3.0596 0.295 3.3945 C 0.3989 2.6414 4.1220 H 0.5786 3.7013 3.8977 H 1.0868 2.3532 4.9295 H -0.6263 2.5549 4.5078 C 3.6454 -1.7024 3.4775 H 4.1235 -0.8225 <	Н	-2.7640	2.9492	-1.3523
H -3.0689 1.2307 -0.9923 C 0.0665 -0.2099 -3.0555 H 0.9629 0.4268 -3.1196 H -0.5341 -0.0749 -3.9670 C 0.4148 -1.6639 -2.8354 H 0.9516 -2.0382 -3.7181 H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 2.4392 0.4652 4.0703 H 2.4392 0.4652 4.0703 H 2.4392 0.4652 4.0703 H 2.651 -0.3922 5.0820 C 2.1209 -1.5945 3.4627 C -0.9163 -0.1374 3.6680 H -0.9469 -1.2337 3.7684 H -0.9664 0.2579 4.6947 C -2.1655 1.4306 2.7795 H -2.1655 1.4306 2.7795 H -2.1655 1.4306 2.7795 H -0.6263 2.5549 4.5078 C 0.3989 2.6414 4.1220 H 0.5786 3.7013 3.8977 H 1.0868 2.3532 4.9295 H -0.6263 2.5549 <	Н	-1.7689	2.1113	-0.1377
$\begin{array}{cccccc} C & 0.0665 & -0.2099 & -3.0555 \\ H & 0.9629 & 0.4268 & -3.1196 \\ H & -0.5341 & -0.0749 & -3.9670 \\ C & 0.4148 & -1.6639 & -2.8354 \\ H & 0.9516 & -2.0382 & -3.7181 \\ H & -0.4926 & -2.2666 & -2.6996 \\ H & 1.0694 & -1.8041 & -1.9617 \\ Au & 0.0032 & -0.1105 & 0.0441 \\ N & 1.5938 & -1.4797 & 2.0273 \\ C & 0.7520 & -0.4945 & 1.8326 \\ C & 0.4899 & 0.2651 & 3.1147 \\ C & 1.6135 & -0.2604 & 4.0503 \\ H & 2.4392 & 0.4652 & 4.0703 \\ H & 1.2651 & -0.3922 & 5.0820 \\ C & 2.1209 & -1.5945 & 3.4627 \\ C & -0.9163 & -0.1374 & 3.6680 \\ H & -0.9469 & -1.2337 & 3.7684 \\ H & -0.9664 & 0.2579 & 4.6947 \\ C & -2.1392 & 0.3359 & 2.8779 \\ H & -2.1644 & -0.0932 & 1.8655 \\ H & -2.1655 & 1.4306 & 2.7795 \\ H & -3.0596 & 0.0295 & 3.3945 \\ C & 0.6064 & 1.7888 & 2.8674 \\ H & 1.6031 & 1.9868 & 2.4395 \\ H & -0.1171 & 2.0792 & 2.0903 \\ C & 0.3989 & 2.6414 & 4.1220 \\ H & 0.5786 & 3.7013 & 3.8977 \\ H & 1.0868 & 2.3532 & 4.9295 \\ H & -0.6263 & 2.5549 & 4.5078 \\ C & 3.6454 & -1.7024 & 3.4775 \\ H & 4.1235 & -0.8225 & 3.0318 \\ H & 3.9867 & -2.6029 & 2.9488 \\ H & 3.9774 & -1.7752 & 4.5225 \\ \end{array}$	Н	-3.0689	1.2307	-0.9923
H 0.9629 0.4268 -3.1196 H -0.5341 -0.0749 -3.9670 C 0.4148 -1.6639 -2.8354 H 0.9516 -2.0382 -3.7181 H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 2.4392 0.4652 4.0703 H 1.2651 -0.3922 5.0820 C 2.1209 -1.5945 3.4627 C -0.9163 -0.1374 3.6680 H -0.9469 -1.2337 3.7684 H -0.9664 0.2579 4.6947 C -2.1392 0.3359 2.8779 H -2.1655 1.4306 2.7795 H -2.1655 1.4306 2.7795 H -0.6064 1.7888 2.8674 H 1.6031 1.9868 2.4395 H -0.1171 2.0792 2.0903 C 0.3989 2.6414 4.1220 H 0.5786 3.7013 3.8977 H 1.0868 2.3532 4.9295 H -0.6263 2.5549 4.5078 C 3.6454 -1.7024 3.4775 H 4.1235 -0.8225 <	С	0.0665	-0.2099	-3.0555
H -0.5341 -0.0749 -3.9670 C 0.4148 -1.6639 -2.8354 H 0.9516 -2.0382 -3.7181 H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 2.4392 0.4652 4.0703 H 1.2651 -0.3922 5.0820 C 2.1209 -1.5945 3.4627 C -0.9163 -0.1374 3.6680 H -0.9664 0.2579 4.6947 C -2.1392 0.3359 2.8779 H -2.1655 1.4306 2.7795 H -2.1655 1.4306 2.7795 H -0.1171 2.0792 2.0903 C 0.3989 2.6414 4.1220 H 0.5786 3.7013 3.8977 H 1.0868 2.3532 4.9295 H -0.6263 2.5549 4.5078 C 3.6454 -1.7024 3.4775 H 4.1235 -0.8225 3.0318 H 3.9867 -2.6029 2.9488	Н	0.9629	0.4268	-3.1196
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-0.5341	-0.0749	-3.9670
H 0.9516 -2.0382 -3.7181 H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 2.4392 0.4652 4.0703 H 1.2651 -0.3922 5.0820 C 2.1209 -1.5945 3.4627 C -0.9163 -0.1374 3.6680 H -0.9664 0.2579 4.6947 C -2.1644 -0.0932 1.8655 H -2.1655 1.4306 2.7795 H -2.1655 1.4306 2.7795 H -2.1655 1.4306 2.7795 H -0.1171 2.0792 2.0903 C 0.3989 2.6414 4.1220 H 0.5786 3.7013 3.8977 H 1.0868 2.3532 4.9295 H -0.6263 2.5549 4.5078 C 3.6454 -1.7024 3.4775 H 4.1235 -0.8225 3.0318 H 3.9867 -2.6029 2.9488	С	0.4148	-1.6639	-2.8354
H -0.4926 -2.2666 -2.6996 H 1.0694 -1.8041 -1.9617 Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 2.4392 0.4652 4.0703 H 1.2651 -0.3922 5.0820 C 2.1209 -1.5945 3.4627 C -0.9163 -0.1374 3.6680 H -0.9469 -1.2337 3.7684 H -0.9664 0.2579 4.6947 C -2.1392 0.3359 2.8779 H -2.1644 -0.0932 1.8655 H -2.1655 1.4306 2.7795 H -3.0596 0.0295 3.3945 C 0.6064 1.7888 2.8674 H 1.6031 1.9868 2.4395 H -0.1171 2.0792 2.0903 C 0.3989 2.6414 4.1220 H 0.5786 3.7013 3.8977 H 1.0868 2.3532 4.9295 H -0.6263 2.5549 4.5078 C 3.6454 -1.7024 3.4775 H 4.1235 -0.8225 3.0318 H 3.9867 -2.6029 2.9488 H 3.9774 -1.7752 4.5225	Н	0.9516	-2.0382	-3.7181
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-0.4926	-2.2666	-2.6996
Au 0.0032 -0.1105 0.0441 N 1.5938 -1.4797 2.0273 C 0.7520 -0.4945 1.8326 C 0.4899 0.2651 3.1147 C 1.6135 -0.2604 4.0503 H 2.4392 0.4652 4.0703 H 1.2651 -0.3922 5.0820 C 2.1209 -1.5945 3.4627 C -0.9163 -0.1374 3.6680 H -0.9469 -1.2337 3.7684 H -0.9664 0.2579 4.6947 C -2.1392 0.3359 2.8779 H -2.1644 -0.0932 1.8655 H -2.1655 1.4306 2.7795 H -3.0596 0.0295 3.3945 C 0.6064 1.7888 2.8674 H 1.6031 1.9868 2.4395 H -0.1171 2.0792 2.0903 C 0.3989 2.6414 4.1220 H 0.5786 3.7013 3.8977 H 1.0868 2.3532 4.9295 H -0.6263 2.5549 4.5078 C 3.6454 -1.7024 3.4775 H 4.1235 -0.8225 3.0318 H 3.9867 -2.6029 2.9488 H 3.9774 -1.7752 4.5225	Н	1.0694	-1.8041	-1.9617
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Au	0.0032	-0.1105	0.0441
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ν	1.5938	-1.4797	2.0273
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.7520	-0.4945	1.8326
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	0.4899	0.2651	3.1147
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	1.6135	-0.2604	4.0503
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	2.4392	0.4652	4.0703
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	1.2651	-0.3922	5.0820
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	2.1209	-1.5945	3.4627
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-0.9163	-0.1374	3.6680
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-0.9469	-1.2337	3.7684
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-0.9664	0.2579	4.6947
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	С	-2.1392	0.3359	2.8779
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Н	-2.1644	-0.0932	1.8655
H-3.05960.02953.3945C0.60641.78882.8674H1.60311.98682.4395H-0.11712.07922.0903C0.39892.64144.1220H0.57863.70133.8977H1.08682.35324.9295H-0.62632.55494.5078C3.6454-1.70243.4775H4.1235-0.82253.0318H3.9867-2.60292.9488H3.9774-1.77524.5225	Н	-2.1655	1.4306	2.7795
C0.60641.78882.8674H1.60311.98682.4395H-0.11712.07922.0903C0.39892.64144.1220H0.57863.70133.8977H1.08682.35324.9295H-0.62632.55494.5078C3.6454-1.70243.4775H4.1235-0.82253.0318H3.9867-2.60292.9488H3.9774-1.77524.5225	Н	-3.0596	0.0295	3.3945
H1.60311.98682.4395H-0.11712.07922.0903C0.39892.64144.1220H0.57863.70133.8977H1.08682.35324.9295H-0.62632.55494.5078C3.6454-1.70243.4775H4.1235-0.82253.0318H3.9867-2.60292.9488H3.9774-1.77524.5225	С	0.6064	1.7888	2.8674
H-0.11712.07922.0903C0.39892.64144.1220H0.57863.70133.8977H1.08682.35324.9295H-0.62632.55494.5078C3.6454-1.70243.4775H4.1235-0.82253.0318H3.9867-2.60292.9488H3.9774-1.77524.5225	Н	1.6031	1.9868	2.4395
C0.39892.64144.1220H0.57863.70133.8977H1.08682.35324.9295H-0.62632.55494.5078C3.6454-1.70243.4775H4.1235-0.82253.0318H3.9867-2.60292.9488H3.9774-1.77524.5225	Н	-0.1171	2.0792	2.0903
H0.57863.70133.8977H1.08682.35324.9295H-0.62632.55494.5078C3.6454-1.70243.4775H4.1235-0.82253.0318H3.9867-2.60292.9488H3.9774-1.77524.5225	С	0.3989	2.6414	4.1220
H1.08682.35324.9295H-0.62632.55494.5078C3.6454-1.70243.4775H4.1235-0.82253.0318H3.9867-2.60292.9488H3.9774-1.77524.5225	Н	0.5786	3.7013	3.8977
H-0.62632.55494.5078C3.6454-1.70243.4775H4.1235-0.82253.0318H3.9867-2.60292.9488H3.9774-1.77524.5225	Н	1.0868	2.3532	4.9295
C3.6454-1.70243.4775H4.1235-0.82253.0318H3.9867-2.60292.9488H3.9774-1.77524.5225	Н	-0.6263	2.5549	4.5078
H4.1235-0.82253.0318H3.9867-2.60292.9488H3.9774-1.77524.5225	С	3.6454	-1.7024	3.4775
H 3.9867 -2.6029 2.9488 H 3.9774 -1.7752 4.5225	Н	4.1235	-0.8225	3.0318
н 3.9774 -1.7752 4.5225	Н	3.9867	-2.6029	2.9488
	Н	3.9774	-1.7752	4.5225

С	1.5257	-2.8306	4.1444
Н	1.8156	-3.7453	3.6114
Н	0.4321	-2.7883	4.2085
Н	1.9245	-2.8925	5.1664
С	1.9457	-2.4302	0.9771
C	1 1072	-3 5468	0 7632
C	1 / 993	-1 1629	-0 2237
	1.4995	5 2200	0.2237
п	0.0772	-3.3390	-0.4103
	2.0510	-4.2000	-0.9012
H	2.93/4	-4.9957	-1./3/9
C	3.4181	-3.1182	-0./935
H	4.2888	-2.9452	-1.4266
С	3.0811	-2.1680	0.1805
С	-0.2368	-3.7394	1.4582
Н	-0.3416	-2.9628	2.2249
С	-1.3862	-3.5317	0.4525
Н	-1.3472	-4.2813	-0.3511
Н	-1.3310	-2.5352	-0.0113
Н	-2.3583	-3.6247	0.9575
С	-0.3669	-5.1082	2.1467
H	0.4517	-5.2938	2.8539
н	-0 3652	-5 9259	1 4128
и П	-1 3161	-5 16/9	2 6981
C	3 8687	-0 8644	
	2 5025	0.2011	1 11/5
п	3.5055	-0.2911	1.1145
	3.5909	-0.0103	-0.9998
H	2.5161	0.2145	-1.08//
H	3.9061	-0.5356	-1.9132
Н	4.1387	0.9415	-0.9466
С	5.3795	-1.0901	0.4302
H	5.8179	-1.5698	-0.4563
Н	5.5987	-1.7279	1.2960
Н	5.8936	-0.1287	0.5703
71			
7			
0	0.0303	-0.0364	3.2289
Н	-0.3847	0.6236	3.8155
Н	0.3908	-0.7485	3.7879
Cu	0.0083	-0.0155	1.2509
Ν	1.0886	0.0676	-1.3895
N	-1.1005	-0.0438	-1.3909
C	-0.0063	0.0055	-0 6182
C	0 7383	0 2195	-2 8254
с ц	1 3670	-0 1280	-3 1177
ц П	T.2010	1 2662	_3 10/0
с С	-0.2020 -0.702	L.2002	J.1240 _2 0200
	-0./403	-U.1/39	-2.0209
н	-1.3/66	∪.48∠/	-3.4418

H	-0.9130	-1.2160	-3.1436
С	2.4133	0.3144	-0.8885
С	3.3033	-0.7776	-0.8163
С	4.5947	-0.5267	-0.3388
Н	5.3132	-1.3426	-0.2655
С	4.9763	0.7595	0.0490
Н	5.9886	0.9362	0.4144
С	4.0730	1.8174	-0.0240
H	4.3863	2.8141	0.2898
C	2.7671	1.6203	-0.4963
C	2 8338	-2 1856	-1 1582
н	2 0331	-2 0990	-1 9094
C	3 9331	-3 0761	-1 7542
с ц	1 1205	-2 5930	-2 6119
и П	3 5030	-1 0279	-2 093/
и П	1 7082	-3 3180	_1 0135
C	2 2101	-2 8385	1.0100
с u	2.2101	-2.0303	_0 1383
п	1 2605	-3.0447	-0.1303
п	1.3003	-2.2309	0.4730
п	2.9300	-2.92J2	0.0932
	1./032	2.7015	-0.5591
Н	0.8342	2.4169	-0.9592
	2.2823	3.9235	-1.4404
H	3.2064	4.3695	-1.04/4
H 	1.5280	4./204	-1.5024
H	2.4919	3.5658	-2.45/5
C	1.4/61	3.2838	0.8828
H	1.0921	2.4639	1.5116
H	0.7201	4.0803	0.8588
H	2.3774	3.6797	1.3702
С	-2.4280	-0.2935	-0.8997
С	-2.7882	-1.6029	-0.5259
С	-4.0986	-1.8020	-0.0671
Н	-4.4171	-2.8016	0.2322
С	-5.0003	-0.7431	0.0091
Н	-6.0165	-0.9216	0.3626
С	-4.6125	0.5465	-0.3611
Н	-5.3302	1.3630	-0.2862
С	-3.3163	0.7997	-0.8234
С	-1.8074	-2.7660	-0.5758
Н	-0.8558	-2.3999	-0.9886
С	-1.5074	-3.2828	0.8428
Н	-1.1261	-2.4692	1.4813
Н	-0.7522	-4.0799	0.8146
Н	-2.4117	-3.6827	1.3219
С	-2.3057	-3.8987	-1.4896
Н	-3.2320	-4.3467	-1.1040
			-

Н	-1.5529	-4.6966	-1.5563
Г	-2.9109	2 2000	-2.5039
U U	-2 0393	2.2099	_1 8078
C	-2 2106	2.1300	1.0970 0 1151
с ц	-2 9590	2.0390	0.1151
н	-1 8236	3 8452	-0 1015
и П	-1 3758	2 2267	0.1013
C	-3 9328	3 1161	-1 7269
н	-4 7056	3 3526	-0 9822
H	-4 4240	2 6492	-2 5913
Н	-3,4965	4.0698	-2.0527
71	3.1900	1.00000	2.002/
8			
0	0.0050	-0.0810	3.7252
H	-0.7325	0.3697	4.1827
Н	0.0536	-0.9674	4.1332
Aq	-0.0167	-0.0239	1.4728
N	1.0949	0.0796	-1.3764
Ν	-1.0911	-0.0543	-1.3729
С	0.0041	0.0086	-0.6067
С	0.7399	0.2225	-2.8149
Н	1.3721	-0.4245	-3.4339
Н	0.8990	1.2686	-3.1181
С	-0.7442	-0.1799	-2.8143
Н	-1.3790	0.4744	-3.4229
Н	-0.9042	-1.2223	-3.1300
С	2.4217	0.3279	-0.8819
С	3.3091	-0.7653	-0.8028
С	4.5967	-0.5151	-0.3148
Н	5.3130	-1.3321	-0.2331
С	4.9777	0.7715	0.0713
Η	5.9868	0.9471	0.4459
С	4.0799	1.8326	-0.0202
H	4.3957	2.8314	0.2842
С	2.7774	1.6369	-0.5017
С	2.8505	-2.1726	-1.1635
H	2.0336	-2.0808	-1.8961
С	3.9515	-3.0293	-1.8055
H	4.4129	-2.5157	-2.6597
H	3.5295	-3.9791	-2.1607
H	4.7459	-3.2772	-1.0880
C II	2.2628	-2.8680	0.0810
H	L.9088	-3.8/85	-0.16/4
H	1.4128	-2.2995	0.4869
н	3.0242	-2.9534	0.8692
C	T.8078	∠.४∪४୨	-0.5950

H	0.8471	2.4353	-0.9743
С	2.3162	3.8753	-1.5835
Н	3.2579	4.3233	-1.2372
Н	1.5794	4.6840	-1.6878
Н	2.4998	3.4435	-2.5769
С	1.5363	3.4186	0.7908
Н	1.1547	2.6578	1.4891
Н	0.7901	4.2214	0.7181
Н	2.4497	3.8428	1.2301
С	-2.4151	-0.2954	-0.8690
С	-2.7765	-1.6023	-0.4853
С	-4.0727	-1.7881	0.0166
Н	-4.3926	-2.7851	0.3230
С	-4.9607	-0.7199	0.1232
H	-5.9655	-0.8879	0.5123
С	-4.5755	0.5637	-0.2687
Н	-5.2842	1.3862	-0.1768
С	-3.2934	0.8044	-0.7759
С	-1.8208	-2.7826	-0.5976
Н	-0.8610	-2.4160	-0.9901
С	-1.5310	-3.4022	0.7807
H	-1.1244	-2.6473	1.4723
Н	-0.7960	-4.2136	0.6924
Н	-2.4418	-3.8153	1.2355
С	-2.3526	-3.8409	-1.5815
H	-3.2930	-4.2812	-1.2221
Н	-1.6251	-4.6558	-1.7004
Н	-2.5474	-3.4032	-2.5701
С	-2.8304	2.2088	-1.1426
H	-2.0204	2.1118	-1.8818
С	-2.2278	2.9038	0.0948
H	-2.9823	2.9987	0.8886
Н	-1.8690	3,9108	-0.1604
Н	-1.3778	2.3322	0.4958
С	-3.9328	3.0692	-1.7771
H	-4.7201	3.3224	-1.0535
Н	-4.4038	2.5563	-2.6265
Н	-3.5093	4.0163	-2.1375
71		1.0100	
9			
0	-0.0633	-0.0057	3.5726
H	-0.0013	0.9044	3.9301
H	0.7166	-0.4780	3.9330
- A11	-0.0403	0.0037	1.3877
N	1.0832	0.0849	-1.3450
N	-1.1126	-0.0554	-1.3657
С	-0.0221	0.0092	-0.5941
		· · · · —	

С	0.7426	0.2195	-2.7840
Н	1.3773	-0.4377	-3.3897
Н	0.9127	1.2616	-3.0942
С	-0.7460	-0.1738	-2.7998
Н	-1.3695	0.4903	-3,4094
Н	-0.9105	-1.2125	-3.1240
C	2,4070	0.3186	-0.8341
C	3 2772	-0 7860	-0 7398
C	4 5605	-0 5507	-0 2327
с u	5 26/1	-1 3775	-0 1375
C	J.2041 1 9521	0 7322	0.15/3
с u	5 9523	0.7522	0.1343
П	1 0600	1 8052	0.0420
	4.0099	1.00JZ	0.0430
п	4.3951	2.0013	0.3400
	2.7724	1.0249	-0.4344
	2.8100	-2.1889	-1.1045
H	1.9595	-2.0896	-1./966
C	3.88//	-3.0213	-1.8151
H	4.2995	-2.4881	-2.6823
H	3.4605	-3.9/10	-2.1643
Н	4.7204	-3.2695	-1.1427
С	2.2843	-2.9113	0.1518
H	1.9122	-3.9136	-0.1028
H	1.4619	-2.3480	0.6179
Н	3.0865	-3.0211	0.8953
С	1.8197	2.8073	-0.5659
Н	0.8573	2.4427	-0.9551
С	2.3516	3.8622	-1.5534
Н	3.2936	4.3011	-1.1965
Н	1.6257	4.6785	-1.6723
Н	2.5441	3.4226	-2.5419
С	1.5335	3.4271	0.8131
Н	1.1219	2.6704	1.4986
Н	0.8033	4.2428	0.7246
Н	2.4469	3.8353	1.2671
С	-2.4429	-0.3106	-0.8798
С	-2.7998	-1.6272	-0.5293
С	-4.1035	-1.8293	-0.0554
Н	-4.4224	-2.8333	0.2273
С	-4,9981	-0.7672	0.0591
H	-6.0077	-0.9480	0.4296
C	-4.6133	0.5266	-0.2970
H	-5.3263	1,3443	-0 1958
C	-3 3248	0 7840	-0 7788
C	-1 8330	-2 7979	-0 6138
с н	-0 8616	-2 /158	-1 0005
с С	_1 5751	_3 //70	1.0003 0 7067
C	-T.J/JT	-2.44/2	0.1201

H	-1.1971	-2.7073	1.4473
Н	-0.8311	-4.2509	0.6358
Н	-2.4937	-3.8829	1.1436
С	-2.3306	-3.8332	-1.6692
Н	-3.2774	-4.2873	-1.3458
Н	-1.5955	-4.6412	-1.7883
Н	-2.5026	-3.3729	-2.6521
С	-2.8635	2.1978	-1.1074
H	-2.0156	2.1197	-1.8058
C	-2 3361	2 8887	0 1661
н	-3 1349	2.0007	0.9166
н	-1 9719	3 9003	-0.0623
н Н	-1 5084	2 3180	0.6133
C	-3 9/58	3 0477	-1 7898
с u	-1 7713	3 2775	-1 1057
и П	-1 3626	2 5375	-2 6685
и П	-3 5212	2.0066	-2 1160
62	5.5212	4.0000	2.1100
10			
0	-0 5922	0 8333	1 6618
	0.1205	0.6545	2 5005
	-0.1295	1 7052	2.5095
п	-0.7576	1.7952	1.0249 0.0115
Cu N	-0.0005	-0.1207	0.0113
N C	1.7040 0.5400	-1.4251	-1./14Z
C	0.5408	-1.003/	-1.5352
C	2.0241	-2.1161	-3.0611
C	0.5839	-2.2101	-3.6183
H 	0.2367	-3.2505	-3.5689
Н	0.5569	-1.9079	-4.6728
С	-0.3165	-1.3002	-2.7383
С	2.8131	-1.2049	-0.7258
С	3.5332	0.0097	-0.7490
С	4.5677	0.1585	0.1867
H	5.1472	1.0825	0.1958
С	4.8550	-0.8396	1.1156
H	5.6720	-0.7050	1.8251
С	4.0764	-1.9944	1.1605
Н	4.2741	-2.7471	1.9249
С	3.0304	-2.2006	0.2504
С	3.1545	1.1904	-1.6384
Н	2.3804	0.8585	-2.3407
С	2.5267	2.3096	-0.7813
Η	3.2514	2.7032	-0.0535
Н	1.6576	1.9304	-0.2169
Н	2.1887	3.1413	-1.4172
С	4.3355	1.7400	-2.4558
Н	5.1129	2.1585	-1.8006

H	3.9930	2.5480	-3.1184
Н	4.8012	0.9617	-3.0742
С	2.1029	-3.3981	0.4229
Н	1.4473	-3.4532	-0.4537
С	1.1874	-3.1771	1.6436
H	1.7759	-3.0951	2.5690
Н	0.4811	-4.0121	1.7545
Н	0 6021	-2 2482	1 5315
C	2 8539	-4 7339	0 5382
н	3 5290	-4 8903	-0 3133
н	2 1395	-5 5682	0.5155
н	3 4541	-4 7802	1 4575
C	2 9436	-1 2366	-3 9149
с u	2.9430	-0 2583	_/ 1282
и П	2.4940	-1 7/38	-/ 8718
и П	3 9110	-1 0855	-3 /176
C	2 6736	-3 /850	_2 9537
	2.0750	-3.4030	-2.0007
п	2 9615	-3.3933	-2.3303
п	2.0010	-3.9347	-3.0303
п С	2.0220	-4.1039	-2.2094
	-0.6118	0.0776	-3.4066
H	-1.02/9	0.7478	-2.6346
H	0.34/0	0.5239	-3./158
C	-1.5654	0.0162	-4.604/
H	-1.2162	-0.6938	-5.3684
H 	-1.6399	1.0041	-5.0790
H	-2.5774	-0.2837	-4.3022
С	-1.6332	-1.9837	-2.2927
H	-2.2489	-1.2251	-1.7791
H	-2.1880	-2.2816	-3.1944
С	-1.4433	-3.1941	-1.3703
H	-0.8263	-3.9761	-1.8374
H	-2.4112	-3.6471	-1.1184
H	-0.9537	-2.9009	-0.4285
62			
11			
0	-0.6958	1.1386	2.0427
Н	-0.3922	0.8626	2.9279
Н	-0.7468	2.1131	2.0626
Ag	-0.0739	0.0369	0.1585
N	1.7442	-1.4124	-1.7163
С	0.5206	-0.9952	-1.5516
С	2.0187	-2.1084	-3.0661
С	0.5856	-2.2091	-3.6322
Н	0.2451	-3.2515	-3.5927
Н	0.5633	-1.9016	-4.6847
С	-0.3295	-1.3094	-2.7557

С	2.7953	-1.1991	-0.7277
С	3.5259	0.0097	-0.7497
С	4.5618	0.1481	0.1856
Н	5.1501	1.0664	0.1931
С	4.8407	-0.8525	1.1136
Н	5.6565	-0.7231	1.8244
С	4.0571	-2.0039	1.1529
H	4.2520	-2.7608	1.9134
C	3.0111	-2.2030	0.2412
C	3 1779	1 1 9 1 1	-1 6499
н	2 3950	0 8727	-2 3485
C	2 5878	2 3427	-0.8120
с ц	3 3181	2.5427	-0 0799
и П	1 6958	2 0087	-0 2558
	1.0900	2.0007	-0.2550
п	Z.Z94Z A 276A	1 6061	-1.4010
	4.3704	1.0901	-2.4/13
H	J.1515 4 0E4C	2.1250	-1.8217
H	4.0546	2.4856	-3.1639
H	4.8401	0.8938	-3.05//
C	2.0974	-3.4136	0.4015
H	1.4231	-3.4523	-0.4621
С	1.2089	-3.2442	1.6488
H	1.8171	-3.1960	2.5636
H	0.5132	-4.0904	1.7429
Н	0.6146	-2.3182	1.5884
С	2.8668	-4.7437	0.4625
Н	3.5244	-4.8733	-0.4066
Н	2.1629	-5.5872	0.4923
Н	3.4902	-4.8051	1.3656
С	2.9409	-1.2278	-3.9137
Н	2.4924	-0.2513	-4.1355
Н	3.1325	-1.7387	-4.8671
Н	3.9047	-1.0738	-3.4116
С	2.6729	-3.4742	-2.8600
Н	3.6353	-3.3814	-2.3390
Н	2.8616	-3.9195	-3.8464
Н	2.0256	-4.1583	-2.2985
С	-0.6444	0.0575	-3.4384
H	-1.1094	0.7190	-2.6890
н	0 3103	0 5315	-3 7176
C	-1 5549	-0 0350	-4 6677
с ц	_1 1553	-0 7253	-5 /2/5
ц	_1 6/01	0.7200	-5 132G
П 11	1.0491 _0 5650	1 2 C C C C	-1 1020
п С	-2.J0JZ	-0.3/22	-4.4030
	-1.0330 2.2001	-2.UI9/	-2.32UI
н 	-2.2691	-1.2816	-1./995
H	-2.1813	-2.3104	-3.2293

С	-1.4313	-3.2453	-1.4216
Н	-0.8094	-4.0119	-1.9064
Н	-2.3960	-3.7136	-1.1824
Н	-0.9465	-2.9755	-0.4722
62			
12			
0	-0.7043	0.8775	1.9742
Н	0.0668	0.9936	2.5664
Н	-1.0497	1.7818	1.8229
Au	-0.0711	-0.0955	0.1038
Ν	1.7533	-1.4142	-1.7090
С	0.5238	-1.0074	-1.5456
С	2.0157	-2.1020	-3.0579
С	0.5838	-2.1780	-3.6372
Н	0.2361	-3.2184	-3.6299
Н	0.5736	-1.8396	-4.6802
С	-0.3365	-1.2959	-2.7493
С	2.8014	-1.1948	-0.7143
С	3.5283	0.0165	-0.7427
С	4.5546	0.1670	0.2013
Н	5.1406	1.0867	0.2056
С	4.8260	-0.8227	1.1428
Н	5.6339	-0.6844	1.8609
С	4.0454	-1.9759	1.1860
Н	4.2345	-2.7237	1.9566
С	3.0079	-2.1882	0.2676
С	3.1841	1.1909	-1.6530
Н	2.4023	0.8678	-2.3510
С	2.5925	2.3494	-0.8260
Н	3.3243	2.7322	-0.1002
Н	1.7015	2.0179	-0.2698
Н	2.2989	3.1792	-1.4847
С	4.3862	1.6859	-2.4752
Н	5.1633	2.1130	-1.8258
Н	4.0694	2.4754	-3.1711
Н	4.8470	0.8789	-3.0588
С	2.0956	-3.3980	0.4378
Н	1.4082	-3.4333	-0.4161
С	1.2264	-3.2351	1.6994
Н	1.8481	-3.1885	2.6051
Н	0.5358	-4.0844	1.8013
Н	0.6280	-2.3114	1.6506
С	2.8668	-4.7279	0.4830
Н	3.5113	-4.8572	-0.3959
Н	2.1632	-5.5713	0.5228
Н	3.5034	-4.7899	1.3767
С	2.9575	-1.2396	-3.9019

H	2.5267	-0.2560	-4.12	73
Н	3.1439	-1.7562	-4.85	32
Н	3.9217	-1.1011	-3.39	61
С	2.6396	-3.4805	-2.84	25
Н	3.6031	-3.4042	-2.32	10
Н	2.8187	-3.9372	-3.82	55
Н	1.9766	-4.1443	-2.27	50
С	-0.6491	0.0840	-3.40	94
Н	-1.1039	0.7360	-2.64	63
Н	0.3069	0.5560	-3.68	89
С	-1.5691	0.0102	-4.63	22
Н	-1.1824	-0.6765	-5.39	90
Н	-1.6577	1.0033	-5.09	31
Н	-2.5803	-0.3202	-4.36	13
С	-1.6432	-2.0165	-2.33	14
Н	-2.2865	-1.2863	-1.81	28
Н	-2.1720	-2.3018	-3.25	27
С	-1.4448	-3.2495	-1.44	20
Н	-0.7920	-3.9982	-1.91	50
Н	-2.4071	-3.7383	-1.24	05
Н	-0.9985	-2.9811	-0.47	27
13				
81				
С	2.32937598	1.117329	96	3.59020209
Н	2.63251209	0.590901	97	4.50601101
С	1.81685901	-1.960924	03	7.31190014
Н	2.21527195	-1.189427	97	6.63766909
С	0.47374901	-2.428718	09	6.72429514
Н	0.04058500	-3.243011	95	7.32237816
Н	0.61784500	-2.806488	04	5.70302010
Н	-0.25296500	-1.605584	03	6.69116402
С	2.24962401	2.026388	88 1	0.51566792
Н	2.75185108	2.423233	03	9.62252331
С	1.00346100	0.488925	01	3.12382293
Н	0.21588500	0.619256	02	3.87754893
Н	1.13479900	-0.586351	99	2.94116092
Н	0.65707898	0.948102	00	2.18801594
С	2.30897689	4.965706	83	6.98723793
Н	2.60453892	4.121840	00	7.62674093
С	3.44448304	0.905472	99	2.55099010
Н	3.18691111	1.375674	96	1.59267104
Н	3.59501600	-0.166853	99	2.36659694
Н	1 00000000	1 33/611	06	2 88888407
C	4.39665/94	1.004011	00	2.00000407
C	4.39665794 1.00492299	2.899713	99 1	0.75997829
H	4.39665794 1.00492299 0.31263700	2.899713	99 1 94	0.75997829 9.90853405
H H	4.39665794 1.00492299 0.31263700 1.30010200	2.855258 3.947410	99 1 94 11 1	0.75997829 9.90853405 0.91145420

С	0.98558497	5.51786995	7.54687881
Н	0.65451199	6.39841986	6.97934914
Н	1.11376405	5.82145977	8.59458637
Н	0.18892500	4.76381493	7.50103092
С	3.24660206	2.13797808	11.68227863
Н	2.79393196	1.80691898	12.62640095
Н	3.56047106	3.18207502	11.81404114
Н	4.14158392	1.52646005	11.50676060
С	2.83926892	-3.11206794	7.35095978
H	3.80990601	-2.77482200	7.73944378
Н	2,99281907	-3.52121496	6.34294605
Н	2.48523092	-3.92880106	7,99543619
C	3 43019104	6 01668596	7 06997013
с н	4 38329887	5 62038898	6 69537210
и П	3 57/12195	6 33798790	8 1105/707
и П	3 18053007	6 90703106	6 17612183
т т	-0 24693599	1 64339304	6 96883393
	1 8/160602	1 53180206	7 06792494
C	1.04100002 2.017/2200	1.33180200	0.00066267
N	2.UI/43300 2.70016205	-0.02079100	0.90000307 6 06555777
N	2.70916295	2.10040709	6.26555777
C	2.32869506	3.10668492	5.21524620
N	2.5/102990	0.78052902	7.92212486
С	4.00611591	1.8421/000	6.61602783
Н	4.85606289	2.25651503	6.09213495
С	1.28502202	-0.20701800	11.25264645
H	1.13479698	0.21896000	12.24409008
С	1.85785198	0.57969499	10.24629307
С	3.91992903	0.96199101	7.65297794
Н	4.67910385	0.45045501	8.22776318
С	2.13374710	4.45312977	5.56511784
С	2.14855289	2.59157896	3.92100692
С	1.63828504	-1.34547400	8.69196796
С	1.07673800	-2.08527088	9.73999500
Н	0.76953000	-3.11546206	9.56121063
С	1.75187194	5.31877279	4.53279495
Н	1.59222305	6.37374783	4.75354719
С	1.76680303	3.50516391	2.93060088
Н	1.61661899	3.15444112	1.90991294
С	0.90122002	-1.52303803	11.00274277
Н	0.45937899	-2.11701798	11.80163574
С	1.57184100	4.85118580	3.23229790
H	1.27317798	5.54214096	2.44512105
0	-3.01760006	1.79882896	6.79268503
C	-3 92521501	1 05576706	7 63269806
Ч Н	-4 56981516	1 42782700	6 99286795
н	-4 57588387	1 76811898	8 1697/258
с С	-3 72012000	1.70011030 2.61701010	5 83135000
C	5.12010909	2.01/01012	J.03433202

Н	-4.35668612	1.96761298	5.20873785
H	-4.38285923	3.31323910	6.37923717
С	-2.72822499	3.38073897	4.97837210
H	-2.09672594	4.03762913	5.59087420
H	-2.07927203	2.69581389	4.41719723
H	-3.27143502	4.00498581	4.25649118
С	-3.14125299	0.20248400	8.60978127
H	-3.83663511	-0.35772100	9.24813175
H	-2.50366092	-0.51974702	8.08317471
H	-2.50714302	0.82201499	9.25674725