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I. THE ELECTROSTATIC FREE ENERGY OF A VESICLE 

We use the process of charging both sides of the vesicle’s membrane to obtain the electrostatic 

free energy of the system. We show that this free energy contains the contribution from the 

dielectric membrane subject to the resulting electric field.  

Consider a vesicle of a given geometry and aggregation numbers inserted in a given volume of 

solution that is in equilibrium with a large external reservoir of mobile ions. Initially, both sides of 

the vesicle’s membrane are set electrically neutral but as we add an infinitesimal charge Q  to 

the surfaces of the membrane, the mobile ions are free to move inside and around the vesicle, 

forming the electrical double layers on both sides of the membrane. For an isothermal charging 

process, the reversible electrical work is equal to the change of the semi-grand thermodynamic 

potential [1,2] 

dSdd
S

          (A1) 

where   is the surface value of the electrostatic potential, integration is over all charged 

surfaces in the system,   is the surface charge density; the added infinitesimal charge 

 S
dSdQ  . 

There are two charged surfaces in a vesicle, and hence 
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where integration is performed separately for the inner and for the outer surfaces of the 

membrane.  

Because the electric potentials and the surface charge densities are uniform on both sides of 

the spherical membrane, the integration over the surfaces gives 
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where 
inR  and 

outR  are the curvature radii of the inner and the outer sides of the membrane, 

respectively. Integration of Eq.(A3) over the charge densities from zero to their final values gives 

the electrostatic contribution to the free energy of the vesicle: 
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The surface potentials depend on the charge densities of both surfaces; this dependence is 

linear within the LPB theory and is given by Eqs.(8a,b), (5a,b) and (9) of the main text. The 
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contour integral of Eq. (A4) along the path connecting points (0,0) and  outin  ,  is then easily 

evaluated by introducing the charging parameter  1,0  and simultaneously charging both 

surfaces: 
inin    ,  dd inin   and 

outout    ,  dd outout   . From Eq. (A4) we 

have 
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Integration over   yields 
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Expressing Eq. (A7) in reduced variables we find the electrostatic free energy of the vesicle per 

surfactant molecule, 
elg , Eq.(11) of the main text.  

The electrostatic free energy given by the contour integral of Eq. (A4) may not depend on the 

path of integration. This is readily shown by taking another integration path, 

     outinin  ,0,0,0  , or, alternatively,      outinout  ,,00,0   . 

Eq. (A4) then gives 
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From Eqs. (8a,b), (5a,b) and (9) the dependence of the surface potentials on the surface charge 

densities may be expressed in the form 

   inoutininininoutinin cba   ,   

   outinoutoutoutoutoutinout cba   ,   

where the coefficients 
outina /

, 
outinb /

, and 
outinc /

 depend on the geometry of the membrane but 

not on the charge density. Solving the integrals in Eq. (A8), we obtain 
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Eq. (A9) is identical to Eq. (A7) because the product
inincR2

 is identical to outoutcR2
 and the extra 

terms in the square brackets of this equation cancel out. The identity of the products is verified 

by expressing inc  and outc  explicitly from Eqs. (8a,b), (5a,b), (9) and (1). The equivalence of 

Eqs. (A7) and (A9) proves the independence of the electrostatic free energy on the specific path 

of the charging process as it should be. 

 

Below we demonstrate that the presence of the dielectric membrane in the vesicle has been 

taken into account by Eq. (A3). 



The drop of the electric field across a charged surface is given by [1-3] 

   nn

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where n


 is the outward unit normal to the surface, the subscripts “+” and “-“denote the outer 

and inner sides of the surface, respectively. Here and below, the constant factor 
0  has been 

included in the definition of  . Substituting the differential of Eq. (A10) into Eq. (A2), we obtain 

for the contributions of the outer and inner surfaces of the membrane to the free energy 
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We now transform the surface integrals of Eq. (A11) into the integrals over the volume. 

According to the Gauss theorem, the volume integral of the divergence A


  any vector A


 is 

equal to the integral of vector A


 over the surface enclosing that volume. We take 

)(  dA


, the general term under the integral sings of Eq. (A11), and hence 

)}({  dA
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 . 

We divide the volume of our system into three parts and consider three closed surfaces that 

engulf these parts of volume (Fig. S1): 

- the solution inside the vesicle enclosed by the inner surface of the vesicle membrane; 

- the solution outside the vesicle enclosed by the outer surface of the membrane, by the 

outer boundary of our system far away in the bulk solution where the electric potential is 

zero, and by the surface constructed by a cut of space to connect these two surfaces; 

- the membrane of the vesicle enclosed by its inner and outer surfaces and by the surface 

produced by a cut across the membrane to connect its inner and outer sides. 

The surface integrals of vector A


 over the outer sides of these three closed surfaces reduce 

exactly to the four integrals of Eq. (A11) because the integrals over the cuts cancel out when 

integrating over their opposite sides and the integral over the outer boundary of the system also 

vanishes since the gradient of the electric potential and vector A


 are identically equal to zero 

far from the vesicle. The free energy given by Eq. (11) is thus equal to the sum of three volume 

integrals spanning the whole volume of the system: 
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The integration variable in Eq. (A12) never crosses the charged surfaces of the membrane 

where   is singular. Keeping this in mind, we rewrite this equation in a more compact form, 

as a single integral over the whole volume of the system: 
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For the integrand of Eq. (A13), we have 



 

 

 

Figure S1 Membrane of the vesicle (shaded) with its charged inner and outer surfaces divides 

the whole volume of the system into three parts: the solution in the inner compartment of the 

vesicle, the dielectric membrane itself, and the outside solution from the charged outer surface 

of the membrane to the outer boundaries of the system far in the bulk (dashed). Arrows show 

the outward normals to the closed surface that engulfs this outer part. Part of this closed surface 

that cuts this outside solution is also shown by dashes. The electric potential is continuous at 

the charged surfaces of the membrane. 
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where the second equality is justified because   and d  are differential operators and hence 

they are interchangeable. 

Using Eq. (A14) in (A13) we obtain 
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The electrostatic free energy   is obtained by integrating the differential terms of Eq. (A15). 

Integrating the second term of this equation by parts, where 
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we finally have 
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The integrands of this equation behave differently in different parts of the system. In the electric 

double layers inside and outside the vesicle   )( , from the Poisson equation. 

Inside the membrane 0 )(   by the Laplace equation and the contribution of this part 

of the volume to the free energy is given by  
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where  D


 is the displacement field (and E


 is the electric field). Eq. (A17) gives 

the polarization energy [1,3] of the polarizable dielectric membrane in the electric field created 

by charging the vesicle’s surfaces. Thus the electrostatic free energy of the vesicle calculated 

from Eqs. (A2)-(A4) automatically includes this polarization contribution.  

 

II. NUMERICAL SOLUTION OF NLPB EQUATION FOR VESICLE AND THE 

ARTIFACTS FROM LPB THEORY 

The electrostatic problem for the vesicle has also been solved numerically using NLPB equations 

for the interior and the exterior of the vesicle coupled through the boundary conditions on the 

inner and the outer sides of the vesicle’s membrane. This system of coupled differential and 

algebraic equations has been solved iteratively with respect to the potential values at the inner 

and the outer sides of the membrane. For testing the FORTRAN software developed in this 

work, calculations have also been performed with the aid of COMSOL MULTIPHYSICS 4.3 

software both using 3D Electrostatics and 1D Coefficient Form PDE models. Figure S2 

illustrates excellent agreement between the calculated results. A minor systematic 

underestimation of the potential on the vesicle’s external surface given by COMSOL 3D 

Electrostatics is related to a somewhat sparser mesh than that used in COMSOL 1D or our 

FORTRAN routines in the domains of rapidly changing potential (see the location of black 

points in Figure S2). Shown in Figure S3 is an example of two-dimensional distribution of the 

electric potential in the plane that contains the center of the vesicle. 

The dependence of the transmembrane potential on salinity is shown in Figure S4 for vesicles of 

systematically increasing inner radii. At a given salinity the transmembrane potential from NLPB 

is a monotonically decreasing function of the curvature radius. Such a monotonic decrease is also 

illustrated by the profiles shown in Figure SI 5. 

In contrast to this result, the transmembrane potential obtained from the LPB theory for low 

salinity may exhibit non-monotonic dependence on curvature, as illustrated in Figure SI 6 for 

mMCsalt 1.0  mMCsalt

310  and mMCsalt

510 . Such non-monotonic behavior is an artifact 

of the LPB approximation that may not be applied at low salinity where the electric potentials 

become large. Nevertheless, we add below a few comments on the asymptotic behavior of the 

LPB solution in the low salinity limit, stressing that this behavior is purely formal and is outside 

of the range of applicability of LPB theory. 
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Figure S2 Profiles of electrostatic potentials for different salinities of the external solution 

calculated from NLPB theory. The vesicle is composed of symmetrical cationic and anionic C8 – 

surfactants. The inner radius 
slR 5 ; the mole fraction of the cationic surfactant 6.0in  in the inner 

and 7.0out  in the outer monolayers of the vesicle’s membrane, respectively; the monolayers’ 

thickness 
soutin l6.0 ; the dielectric permittivity 1.2m   in the hydrocarbon membrane and 

2.78w   in water. Colored symbols: from FORTRAN routine; black points: COMSOL 3D; white 

triangles: COMSOL 1D. 



 

Figure S3 The map of electrostatic potential for the model vesicle of Figure S2 at 1.0 mM salt. 

Calculated using COMSOL 1D model.  
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Figure S4 The transmembrane potential from NLPB theory as function of external salinity for 

C8+C8 catanionic vesicles of varying inner radii. 
soutin l6.0  Different colors correspond 

to different charges of the inner and outer surfaces of the vesicle’s membrane.  
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Figure SI 5 Profile of the electric potential calculated from NLPB theory for CTAB+SOS 

vesicles of varying curvature at 100mM external salinity. 
soutin l6.0 ; CTAB mole fractions 

in the membrane 6.0in  and 7.0out . 
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Figure SI 6 The transmembrane potential from LPB theory vs the inner radius of the vesicle (in units of 

surfactant’s tail length 
sl ) at varying salinity. The parameters of the vesicle are given in Figure SI 2. 

Vertical dashes show locations of maxima estimated from Eq. (A21) 

 



For sufficiently low salinity we may have 1inR  and 1outR  even for vesicles about 

hundred nanometers large. Expanding the transmembrane potential to second order in   we 

obtain the effective charge densities from Eqs. (9), (5a) and (5b) 

 
2

22

)(
outw

ininoutout
m

eff

out
R

RtRt
t




          (A18a) 

 



















outm

w

out

in
ininoutout

w

in
m

eff

in
RR

R
RtRt

R
t











3
)(

2

      (A18b) 

These equations and Eqs (8a), (8b) give the surface potentials in the low salinity limit 

  
kT

e

R

RR
xu

outw

ininoutout
outout

0

0

22



 
         (A19a) 

 
kT

e

RR

R
RRxu

outm

w

out

in
ininoutout

w

inin

0

01
)(




























      (A19b) 

and the limiting value of the transmembrane potential 
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In Eqs. (A18)-(A20), the vesicle dimensions inR , outR  and  τ have been expressed in units of length. Eqs. 

(A19)-(A20) show that the surface potentials and their transmembrane difference remain finite in 

the zero salinity limit. Remarkably, in this limit, the transmembrane potential does not depend on the 

charge of the outer surface of the membrane. 

For low salinity, there is a maximum of the transmembrane potential vs curvature. The location of this 

maximum may be estimated from an approximate equation obtained by expanding the transmembrane 

potential to the second order in   and the surface charge densities to the first order in inin R . 

Equating to zero the derivative of 
m  with respect to 

inR  and performing tedious algebra we obtain 
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Neglecting the linear in curvature term in this equation, we finally have 
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The location of the maximum estimated from this equation is shown in Figure SI6 that displays an 

example of such maxima for a model vesicle. These maxima first appear at salinity of ca 0.1mM and shift 

to larger radii as the salinity is diminished. The accuracy of Eq.(A21) improves with decreasing salinity. 
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